Jean-Paul Kneib
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jean-Paul Kneib.
Astrophysical Journal Supplement Series | 2007
N. Z. Scoville; H. Aussel; M. Brusa; P. Capak; C. M. Carollo; M. Elvis; Mauro Giavalisco; L. Guzzo; G. Hasinger; C. D. Impey; Jean-Paul Kneib; O. LeFevre; S. J. Lilly; B. Mobasher; A. Renzini; Robert Michael Rich; D. B. Sanders; E. Schinnerer; D. Schminovich; Patrick Lynn Shopbell; Yoshiaki Taniguchi; Neil De Grasse Tyson
The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0.5-6. The survey includes multiwavelength imaging and spectroscopy from X-ray-to-radio wavelengths covering a 2 deg^2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.
Astrophysical Journal Supplement Series | 2007
P. Capak; H. Aussel; Masaru Ajiki; H. J. McCracken; B. Mobasher; N. Z. Scoville; Patrick Lynn Shopbell; Y. Taniguchi; D. Thompson; S. Tribiano; S. S. Sasaki; A. W. Blain; M. Brusa; C. L. Carilli; A. Comastri; C. M. Carollo; P. Cassata; James W. Colbert; Richard S. Ellis; M. Elvis; Mauro Giavalisco; W. Green; L. Guzzo; G. Hasinger; O. Ilbert; C. D. Impey; Knud Jahnke; J. Kartaltepe; Jean-Paul Kneib; Jin Koda
We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3 and 2.4 μm. These include data taken on the Subaru 8.3 m telescope, the KPNO and CTIO 4 m telescopes, and the CFHT 3.6 m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard-star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.
Monthly Notices of the Royal Astronomical Society | 2005
T. R. Greve; F. Bertoldi; Ian Smail; R. Neri; S. C. Chapman; A. W. Blain; R. J. Ivison; R. Genzel; A. Omont; P. Cox; L. J. Tacconi; Jean-Paul Kneib
In this paper, we present results from an Institut de Radio Astronomie Millimetrique (IRAM) Plateau de Bure millimetre-wave Interferometer (PdBI) survey for carbon monoxide (CO) emission towards radio-detected submillimetre galaxies (SMGs) with known optical and near-infrared spectroscopic redshifts. Five sources in the redshift range z ∼ 1-3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarize the properties of all 12 CO-detected SMGs, as well as six sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the submillimetre galaxy (SMG) population as a whole. The median CO line luminosity of the SMGs is = (3.8 ± 2.0) × 10 10 K km s -1 pc 2 . Using a CO-to-H 2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass = (3.0 ± 1.6) x 10 10 M ○. within an ∼ 2 kpc radius, approximately 4 times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high-redshift radio galaxies (HzRGs) and quasi-sellar objects (QSOs). The median CO FWHM linewidth is broad, (FWHM) = 780 ± 320 km s -1 , and the SMGs often have double-peaked line profiles, indicative of either a merger or a disc. From their median gas reservoirs (∼ 3 x 10 10 M ○. ) and star formation rates (≥ 700 M ○. yr -1 ), we estimate a lower limit on the typical gas-depletion time-scale of ≥ 40 Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs and suggests that negative feedback processes may play an important role in prolonging the gas consumption time-scale. We find a statistically significant correlation between the far-infrared and CO luminosities of the SMGs, which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. The non-linear nature of the correlation implies that SMGs have higher far-infrared to CO luminosity ratios and possibly higher star formation efficiencies (SFEs), than local ULIRGs. Assuming a typical CO source diameter of θ ∼ 0.5 arcsec (D ∼ 4kpc), we estimate a median dynamical mass of ≃ (1.2 ± 1.5) x 10 11 M ○. for the SMG sample. Both the total gas and stellar masses imply that SMGs are very massive systems, dominated by baryons in their central regions. The baryonic and dynamical properties of these systems mirror those of local giant ellipticals and are consistent with numerical simulations of the formation of the most massive galaxies. We have been able to impose a lower limit of ≥ 5 x 10 -6 Mpc -3 to the comoving number density of massive galaxies in the redshift range z ∼ 2-3.5, which is in agreement with results from recent spectroscopic surveys and the most recent model predictions.
The Astrophysical Journal | 2012
Alexie Leauthaud; Jeremy L. Tinker; Kevin Bundy; Peter Behroozi; Richard Massey; Jason Rhodes; Matthew R. George; Jean-Paul Kneib; Andrew J. Benson; Risa H. Wechsler; Michael T. Busha; P. Capak; Marina Cortês; O. Ilbert; Anton M. Koekemoer; Oliver Le Fevre; S. J. Lilly; H. J. McCracken; M. Salvato; Tim Schrabback; N. Z. Scoville; Tristan L. Smith; James E. Taylor
Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as M-h proportional to M-*(0.46) and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M-* \textgreater 5 x 10(10)M(circle dot) and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh/M*, varies from low to high masses, reaching a minimum of Mh/M-* similar to 27 at M-* = 4.5 x 10(10) M-circle dot and M-h = 1.2 x 10(12) M-circle dot. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been themost efficient. We describe the SHMR at this minimum in terms of the “ pivot stellarmass,” M-*(piv) the “pivot halo mass,” M-h(piv), and the “pivot ratio,” (M-h/M-*)(piv). Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M-h(piv) and M-*(piv) The pivot stellar mass decreases from M-*(piv) = 5.75 +/- 0.13x10(10) M-circle dot at z = 0.88 to M-*(piv) = 3.55 +/- 0.17x10(10) M-circle dot at z = 0.37. Intriguingly, however, the corresponding evolution of M-h(piv) leaves the pivot ratio constant with redshift at (M-h/M-*)(piv) similar to 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on M-h/M-* and not simply onMh, as is commonly assumed. We show that simple models with such a dependence naturally lead to downsizing in the sites of star formation. Finally, we discuss the implications of our results in the context of popular quenching models, including disk instabilities and active galactic nucleus feedback.
Astrophysical Journal Supplement Series | 2009
S. J. Lilly; Vincent Le Brun; C. Maier; V. Mainieri; Marco Mignoli; M. Scodeggio; Gianni Zamorani; Marcella Carollo; T. Contini; Jean-Paul Kneib; Olivier Le Fevre; A. Renzini; S. Bardelli; M. Bolzonella; A. Bongiorno; Karina Caputi; G. Coppa; O. Cucciati; Sylvain de la Torre; Loic de Ravel; P. Franzetti; Bianca Garilli; A. Iovino; P. Kampczyk; K. Kovac; C. Knobel; F. Lamareille; Jean-Francois Le Borgne; R. Pello; Yingjie Peng
We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.
Astrophysical Journal Supplement Series | 2007
Anton M. Koekemoer; H. Aussel; Daniela Calzetti; P. Capak; Mauro Giavalisco; Jean-Paul Kneib; A. Leauthaud; O. Le Fèvre; H. J. McCracken; Richard Massey; B. Mobasher; Jason Rhodes; N. Z. Scoville; Patrick Lynn Shopbell
We describe the details of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) observations of the COSMOS field, including the data calibration and processing procedures. We obtained a total of 583 orbits of HST ACS/WFC imaging in the F814W filter, covering a field that is 1.64 deg^2 in area, the largest contiguous field ever imaged with HST. The median exposure depth across the field is 2028 s (one HST orbit), achieving a limiting point-source depth AB(F814W) = 27.2 (5 σ). We also present details of the astrometric image registration and distortion removal and image combination using MultiDrizzle, motivating the choice of our final pixel scale (30 mas pixel^(-1)), based on the requirements for weak-lensing science. The final set of images are publicly available through the archive sites at IPAC and STScI, along with further documentation on how they were produced.
The Astrophysical Journal | 1996
Jean-Paul Kneib; Richard S. Ellis; Ian Smail; Warrick J. Couch; Ray M. Sharples
We present a striking new Hubble Space Telescope (HST) observation of the rich cluster Abell 2218 taken with the Wide-Field and Planetary Camera (WFPC2). HSTs restored image quality reveals a sizeable number of gravitationally-lensed features in this cluster, significantly more than had been identified using ground-based telescopes. The brightest arcs are resolved by HST and show internal features enabling us to identify multiply-imaged examples, confirming and improving the mass models of the cluster determined from ground-based observations. Although weak lensing has been detected statistically in this and other clusters from ground-based data, the superlative resolution of HST enables us to individually identify weakly distorted images more reliably than hitherto, with important consequences for their redshift determination. Using an improved mass model for the cluster calibrated with available spectroscopy for the brightest arcs, we demonstrate how inversion of the lensing model can be used to yield the redshift distribution of
The Astrophysical Journal | 2003
Tommaso Treu; Richard S. Ellis; Jean-Paul Kneib; Alan Michael Dressler; Ian Smail; Oliver Czoske; Augustus Oemler; Priyamvada Natarajan
\sim
Astronomy and Astrophysics | 2015
Timothée Delubac; Julian Bautista; Nicolás G. Busca; James Rich; D. Kirkby; S. Bailey; Andreu Font-Ribera; Anže Slosar; Khee-Gan Lee; Matthew M. Pieri; Jean-Christophe Hamilton; Eric Aubourg; Michael Blomqvist; Jo Bovy; J. Brinkmann; W. Carithers; Kyle S. Dawson; Daniel J. Eisenstein; Satya Gontcho A Gontcho; Jean-Paul Kneib; Jean-Marc Le Goff; Daniel Margala; Jordi Miralda-Escudé; Adam D. Myers; Robert C. Nichol; P. Noterdaeme; Ross O’Connell; Matthew D. Olmstead; Nathalie Palanque-Delabrouille; Isabelle Pâris
80 faint arclets to
The Astrophysical Journal | 2010
Andrea Merloni; A. Bongiorno; M. Bolzonella; M. Brusa; F. Civano; A. Comastri; M. Elvis; F. Fiore; R. Gilli; Heng Hao; Knud Jahnke; Anton M. Koekemoer; E. Lusso; V. Mainieri; M. Mignoli; Takamitsu Miyaji; A. Renzini; M. Salvato; J. D. Silverman; Jonathan R. Trump; C. Vignali; G. Zamorani; P. Capak; S. J. Lilly; D. B. Sanders; Yoshiaki Taniguchi; S. Bardelli; C. M. Carollo; Karina Caputi; T. Contini
R\simeq25