Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Philippe Coppe is active.

Publication


Featured researches published by Jean-Philippe Coppe.


PLOS Biology | 2008

Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

Jean-Philippe Coppe; Christopher K. Patil; Francis Rodier; Yun-Yu Sun; Denise P. Muñoz; Joshua Goldstein; Peter S. Nelson; Pierre-Yves Desprez; Judith Campisi

Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.


Annual Review of Pathology-mechanisms of Disease | 2010

The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression

Jean-Philippe Coppe; Pierre-Yves Desprez; Ana Krtolica; Judith Campisi

Cellular senescence is a tumor-suppressive mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.


Nature Cell Biology | 2009

Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion

Francis Rodier; Jean-Philippe Coppe; Christopher K. Patil; Wieteke A. M. Hoeijmakers; Denise P. Muñoz; Saba R. Raza; Adam Freund; Eric Campeau; Albert R. Davalos; Judith Campisi

Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signalling, usually associated with senescence, not after transient DNA damage responses (DDRs). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell-cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Furthermore, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell-cycle checkpoints and DNA repair, a new and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue.


Journal of Cell Science | 2005

Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

Simona Parrinello; Jean-Philippe Coppe; Ana Krtolica; Judith Campisi

Cellular senescence suppresses cancer by arresting cells at risk of malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation and branching morphogenesis. Furthermore, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts - the ability to alter epithelial differentiation - that might also explain the loss of tissue function and organization that is a hallmark of aging.


Cancer and Metastasis Reviews | 2010

Senescent cells as a source of inflammatory factors for tumor progression

Albert R. Davalos; Jean-Philippe Coppe; Judith Campisi; Pierre-Yves Desprez

Cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, therefore constituting a potent tumor suppressive mechanism. Recent studies show that, despite the beneficial effects of cellular senescence, senescent cells can also exert harmful effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescent-associated secretory phenotype (SASP), which entails a striking increase in the secretion of pro-inflammatory cytokines. Here, we summarize our knowledge of the SASP and the impact it has on tissue microenvironments and ability to stimulate tumor progression.


Journal of Biological Chemistry | 2006

Secretion of Vascular Endothelial Growth Factor by Primary Human Fibroblasts at Senescence

Jean-Philippe Coppe; Katalin Kauser; Judith Campisi; Christian M. Beauséjour

Cellular senescence prevents the proliferation of cells at risk for neoplastic transformation. Nonetheless, the senescence response is thought to be antagonistically pleiotropic and thus contribute to aging phenotypes, including, ironically, late life cancers. The cancer-promoting activity of senescent cells is likely due to secreted molecules, the identity of which remains largely unknown. Here, we have shown that senescent fibroblasts, much more than presenescent fibroblasts, stimulate tumor vascularization in mice. Weakly malignant epithelial cells co-injected with senescent fibroblasts had larger and greater numbers of blood vessels compared with controls. Accordingly, increased vascular endothelial growth factor (VEGF) expression was a frequent characteristic of senescent human and mouse fibroblasts in culture. Importantly, conditioned medium from senescent fibroblasts, more than medium from presenescent cells, stimulates cultured human umbilical vein endothelial cells to invade a basement membrane, a hallmark of angiogenesis. Increased VEGF expression was specific to the senescent phenotype and increased whether senescence was induced by replicative exhaustion, overexpression of p16Ink4a, or overexpression of oncogenic RAS. The senescence-dependent increase in VEGF production was accompanied by very little increase in hypoxic-inducible (transcription) factor 1 α protein levels, and hypoxia further induced VEGF in senescent cells. This result suggests the rise in VEGF expression at senescence is not a hypoxic response. Our findings may in part explain why senescent cells stimulate tumorigenesis in vivo and support the idea that senescent cells may facilitate age-associated cancer development by secreting factors that promote malignant progression.


Journal of Biological Chemistry | 2011

Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype

Jean-Philippe Coppe; Francis Rodier; Christopher K. Patil; Adam Freund; Pierre-Yves Desprez; Judith Campisi

Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16INK4a, a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16INK4a and another cyclin-dependent kinase inhibitor, p21CIP1/WAF1, induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16INK4a. Cells induced to senesce by ectopic p16INK4a expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16INK4a by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16INK4a in suppressing the SASP. These findings suggest that p16INK4a-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16INK4a activation or senescence per se, but rather is a damage response that is separable from the growth arrest.


Aging Cell | 2010

Ionizing radiation‐induced long‐term expression of senescence markers in mice is independent of p53 and immune status

Oanh Nl Le; Francis Rodier; François Fontaine; Jean-Philippe Coppe; Judith Campisi; James DeGregori; Caroline Laverdière; Victor Kokta; Elie Haddad; Christian M. Beauséjour

Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR‐induced senescence markers could persist long‐term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16INK4a expression, two hallmarks of cellular senescence and aging. BrdU‐labeling experiments revealed that IR‐induced damaged cells are preferentially eliminated, at least partially, in a tissue‐dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild‐type and Rag2−/− γC−/− mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long‐term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.


Molecular Cancer Research | 2008

A Role for Fibroblasts in Mediating the Effects of Tobacco-Induced Epithelial Cell Growth and Invasion

Jean-Philippe Coppe; Megan Boysen; Chung Ho Sun; Brian J. F. Wong; Mo K. Kang; No-Hee Park; Pierre-Yves Desprez; Judith Campisi; Ana Krtolica

Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. (Mol Cancer Res 2008;6(7):1085–98)


Differentiation | 2011

GROα regulates human embryonic stem cell self-renewal or adoption of a neuronal fate

Ana Krtolica; Nick Larocque; Olga Genbacev; Dusko Ilic; Jean-Philippe Coppe; Christopher K. Patil; Tamara Zdravkovic; Michael T. McMaster; Judith Campisi; Susan J. Fisher

Previously we reported that feeders formed from human placental fibroblasts (hPFs) support derivation and long-term self-renewal of human embryonic stem cells (hESCs) under serum-free conditions. Here, we show, using antibody array and ELISA platforms, that hPFs secrete ∼6-fold higher amounts of the CXC-type chemokine, GROα, than IMR 90, a human lung fibroblast line, which does not support hESC growth. Furthermore, immunocytochemistry and immunoblot approaches revealed that hESCs express CXCR, a GROα receptor. We used this information to develop defined culture medium for feeder-free propagation of hESCs in an undifferentiated state. Cells passaged as small aggregates and maintained in the GROα-containing medium had a normal karyotype, expressed pluripotency markers, and exhibited apical-basal polarity, i.e., had the defining features of pluripotent hESCs. They also differentiated into the three primary (embryonic) germ layers and formed teratomas in immunocompromised mice. hESCs cultured as single cells in the GROα-containing medium also had a normal karyotype, but they downregulated markers of pluripotency, lost apical-basal polarity, and expressed markers that are indicative of the early stages of neuronal differentiation-βIII tubulin, vimentin, radial glial protein, and nestin. These data support our hypothesis that establishing and maintaining cell polarity is essential for the long-term propagation of hESCs in an undifferentiated state and that disruption of cell-cell contacts can trigger adoption of a neuronal fate.

Collaboration


Dive into the Jean-Philippe Coppe's collaboration.

Top Co-Authors

Avatar

Judith Campisi

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Pierre-Yves Desprez

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ana Krtolica

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher K. Patil

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise M. Wolf

University of California

View shared research outputs
Top Co-Authors

Avatar

Adam Freund

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Albert R. Davalos

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Francis Rodier

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joe W. Gray

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge