Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre-Yves Desprez is active.

Publication


Featured researches published by Pierre-Yves Desprez.


PLOS Biology | 2008

Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

Jean-Philippe Coppe; Christopher K. Patil; Francis Rodier; Yun-Yu Sun; Denise P. Muñoz; Joshua Goldstein; Peter S. Nelson; Pierre-Yves Desprez; Judith Campisi

Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.


Annual Review of Pathology-mechanisms of Disease | 2010

The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression

Jean-Philippe Coppe; Pierre-Yves Desprez; Ana Krtolica; Judith Campisi

Cellular senescence is a tumor-suppressive mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into proinflammatory cells that have the ability to promote tumor progression.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging

Ana Krtolica; Simona Parrinello; Stephen J. Lockett; Pierre-Yves Desprez; Judith Campisi

Mammalian cells can respond to damage or stress by entering a state of arrested growth and altered function termed cellular senescence. Several lines of evidence suggest that the senescence response suppresses tumorigenesis. Cellular senescence is also thought to contribute to aging, but the mechanism is not well understood. We show that senescent human fibroblasts stimulate premalignant and malignant, but not normal, epithelial cells to proliferate in culture and form tumors in mice. In culture, the growth stimulation was evident when senescent cells comprised only 10% of the fibroblast population and was equally robust whether senescence was induced by replicative exhaustion, oncogenic RAS, p14ARF, or hydrogen peroxide. Moreover, it was due at least in part to soluble and insoluble factors secreted by senescent cells. In mice, senescent, much more than presenescent, fibroblasts caused premalignant and malignant epithelial cells to form tumors. Our findings suggest that, although cellular senescence suppresses tumorigenesis early in life, it may promote cancer in aged organisms, suggesting it is an example of evolutionary antagonistic pleiotropy.


Journal of Biological Chemistry | 2011

Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype

Jean-Philippe Coppe; Francis Rodier; Christopher K. Patil; Adam Freund; Pierre-Yves Desprez; Judith Campisi

Cellular senescence suppresses cancer by preventing the proliferation of cells that experience potentially oncogenic stimuli. Senescent cells often express p16INK4a, a cyclin-dependent kinase inhibitor, tumor suppressor, and biomarker of aging, which renders the senescence growth arrest irreversible. Senescent cells also acquire a complex phenotype that includes the secretion of many cytokines, growth factors, and proteases, termed a senescence-associated secretory phenotype (SASP). The SASP is proposed to underlie age-related pathologies, including, ironically, late life cancer. Here, we show that ectopic expression of p16INK4a and another cyclin-dependent kinase inhibitor, p21CIP1/WAF1, induces senescence without a SASP, even though they induced other features of senescence, including a stable growth arrest. Additionally, human fibroblasts induced to senesce by ionizing radiation or oncogenic RAS developed a SASP regardless of whether they expressed p16INK4a. Cells induced to senesce by ectopic p16INK4a expression lacked paracrine activity on epithelial cells, consistent with the absence of a functional SASP. Nonetheless, expression of p16INK4a by cells undergoing replicative senescence limited the accumulation of DNA damage and premature cytokine secretion, suggesting an indirect role for p16INK4a in suppressing the SASP. These findings suggest that p16INK4a-positive cells may not always harbor a SASP in vivo and, furthermore, that the SASP is not a consequence of p16INK4a activation or senescence per se, but rather is a damage response that is separable from the growth arrest.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice

Mohammed Kashani-Sabet; Yong Liu; Sylvia Fong; Pierre-Yves Desprez; Shuqing Liu; Guanghuan Tu; Mehdi Nosrati; Chakkrapong Handumrongkul; Denny Liggitt; Ann Thor; Robert J. Debs

To date, functional genomic studies have been confined to either cell-based assays or germline mutations, using transgenic or knockout animals. However, these approaches are often unable either to recapitulate complex biologic phenotypes, such as tumor metastasis, or to identify the specific genes and functional pathways that produce serious diseases in adult animals. Although the transcription factor NF-κB transactivates many metastasis-related genes in cells, the precise genes and functional-pathways through which NF-κB regulates metastasis in tumor-bearing hosts are poorly understood. Here, we show that the systemic delivery of plasmid-based ribozymes targeting NF-κB in adult, tumor-bearing mice suppressed NF-κB expression in metastatic melanoma cells, as well as in normal cell types, and significantly reduced metastatic spread. Plasmid-based ribozymes suppressed target-gene expression with sequence specificity not achievable by using synthetic oligonucleotide-based approaches. NF-κB seemed to regulate tumor metastasis through invasion-related, rather than angiogenesis-, cell-cycle- or apoptosis-related pathways in tumor-bearing mice. Furthermore, ribozymes targeting either of the NF-κB-regulated genes, integrin β3 or PECAM-1 (a ligand-receptor pair linked to cell adhesion), reduced tumor metastasis at a level comparable to NF-κB. These studies demonstrate the utility of gene targeting by means of systemic, plasmid-based ribozymes to dissect out the functional genomics of complex biologic phenotypes, including tumor metastasis.


Molecular Cancer Research | 2008

A Role for Fibroblasts in Mediating the Effects of Tobacco-Induced Epithelial Cell Growth and Invasion

Jean-Philippe Coppe; Megan Boysen; Chung Ho Sun; Brian J. F. Wong; Mo K. Kang; No-Hee Park; Pierre-Yves Desprez; Judith Campisi; Ana Krtolica

Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. (Mol Cancer Res 2008;6(7):1085–98)


Proceedings of the National Academy of Sciences of the United States of America | 2003

Functional identification of distinct sets of antitumor activities mediated by the FKBP gene family

Sylvia Fong; Leslie C. Mounkes; Yong Liu; Michael Maibaum; Eric Alonzo; Pierre-Yves Desprez; Ann Thor; Mohammed Kashani-Sabet; Robert J. Debs

Assigning biologic function to the many sequenced but still uncharacterized genes remains the greatest obstacle confronting the human genome project. Differential gene expression profiling routinely detects uncharacterized genes aberrantly expressed in conditions such as cancer but cannot determine which genes are functionally involved in such complex phenotypes. Integrating gene expression profiling with specific modulation of gene expression in relevant disease models can identify complex biologic functions controlled by currently uncharacterized genes. Here, we used systemic gene transfer in tumor-bearing mice to identify novel antiinvasive and antimetastatic functions for Fkbp8, and subsequently for Fkbp1a. Fkbp8 is a previously uncharacterized member of the FK-506-binding protein (FKBP) gene family down-regulated in aggressive tumors. Antitumor effects produced by Fkbp1a gene expression are mediated by cellular pathways entirely distinct from those responsible for antitumor effects produced by Fkbp1a binding to its bacterially derived ligand, rapamycin. We then used gene expression profiling to identify syndecan 1 (Sdc1) and matrix metalloproteinase 9 (MMP9) as genes directly regulated by Fkbp1a and Fkbp8. FKBP gene expression coordinately induces the expression of the antiinvasive Sdc1 gene and suppresses the proinvasive MMP9 gene. Conversely, short interfering RNA-mediated suppression of Fkbp1a increases tumor cell invasion and MMP9 levels, while down-regulating Sdc1. Thus, syndecan 1 and MMP9 appear to mediate the antiinvasive and antimetastatic effects produced by FKBP gene expression. These studies show that uncharacterized genes differentially expressed in metastatic cancers can play important functional roles in the metastatic phenotype. Furthermore, identifying gene regulatory networks that function to control tumor progression may permit more accurate modeling of the complex molecular mechanisms of this disease.


Cell Cycle | 2009

A novel form of the telomere-associated protein TIN2 localizes to the nuclear matrix

Patrick Kaminker; Sahn-Ho Kim; Pierre-Yves Desprez; Judith Campisi

Telomeres are specialized heterochromatin at the ends of linear chromosomes. Telomeres are crucial for maintaining genome stability and play important roles in cellular senescence and tumor biology. Six core proteins -- TRF1, TRF2, TIN2, POT1, TPP1, and Rap1 (termed the telosome or shelterin complex) – regulate telomere structure and function. One of these proteins, TIN2, regulates telomere length and structure indirectly by interacting with TRF1, TRF2 and TPP1, but no direct function has been attributed to TIN2. Here we present evidence for a TIN2 isoform (TIN2L) that differs from the originally described TIN2 isoform (TIN2S) in two ways: TIN2L contains an additional 97 amino acids, and TIN2L associates strongly with the nuclear matrix. Stringent salt and detergent conditions failed to extract TIN2L from the nuclear matrix, despite removing other telomere components, including TIN2S. In human mammary epithelial cells, each isoform showed a distinct nuclear distribution both as a function of cell cycle position and telomere length. Our results suggest a dual role for TIN2 in mediating the function of the shelterin complex and tethering telomeres to the nuclear matrix.


British Journal of Cancer | 2016

Context-dependent effects of cellular senescence in cancer development

Pacome Lecot; Fatouma Alimirah; Pierre-Yves Desprez; Judith Campisi; Christopher D. Wiley

Cellular senescence is an established tumour-suppressive mechanism that prevents the proliferation of premalignant cells. However, several lines of evidence show that senescent cells, which often persist in vivo, can also promote tumour progression in addition to other age-related pathologies via the senescence-associated secretory phenotype (SASP). Moreover, new insights suggest the SASP can facilitate tissue repair. Here, we review the beneficial and detrimental roles of senescent cells, highlighting conditions under which the senescence response does and does not promote pathology, particularly cancer. By better understanding the context-dependent effects of cellular senescence, it may be feasible to limit its detrimental properties while preserving its beneficial effects, and develop novel therapeutic strategies to prevent or treat cancer and possibly other age-associated diseases.


Journal of Biological Chemistry | 2002

A Role for p53 in Maintaining and Establishing the Quiescence Growth Arrest in Human Cells

Koji Itahana; Goberdhan P. Dimri; Eiji Hara; Yoko Itahana; Ying Zou; Pierre-Yves Desprez; Judith Campisi

Collaboration


Dive into the Pierre-Yves Desprez's collaboration.

Top Co-Authors

Avatar

Judith Campisi

University of California

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Coppe

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ana Krtolica

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher K. Patil

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam Freund

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Ann Thor

University of California

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Wiley

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Rodier

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mohammed Kashani-Sabet

California Pacific Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge