Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Philippe Godin is active.

Publication


Featured researches published by Jean-Philippe Godin.


Rapid Communications in Mass Spectrometry | 2011

Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS)

Jean-Philippe Godin; James S. O. McCullagh

High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry.


Journal of Mass Spectrometry | 2008

Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C–valine isotopic ratios in complex biological samples

Jean-Philippe Godin; Denis Breuille; Christiane Obled; Isabelle Papet; Henk Schierbeek; Gérard Hopfgartner; Laurent-Bernard Fay

On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that the LC-IRMS was successful for high-precision (13)C isotopic measurements in tracer studies giving (13)C isotopic enrichment similar to the GC-C-IRMS but without the step of GC derivatisation. Therefore, for clinical studies requiring high-precision isotopic measurement, the LC-IRMS is the method of choice to measure the isotopic ratio.


Journal of Nutrition | 2009

Intestinal Inflammation Increases Gastrointestinal Threonine Uptake and Mucin Synthesis in Enterally Fed Minipigs

Didier Rémond; Caroline Buffière; Jean-Philippe Godin; Philippe Paturename Mirand; Christiane Obled; Isabelle Papet; Dominique Dardevet; Gary Williamson; Denis Breuille; Magali Faure

The high requirement of the gut for threonine has often been ascribed to the synthesis of mucins, secreted threonine-rich glycoproteins protecting the intestinal epithelium from injury. This requirement could be even greater during intestinal inflammation, when mucin synthesis is enhanced. In this study, we used an animal model to investigate the effects of an acute ileitis on threonine splanchnic fluxes. Eight adult multi-catheterized minipigs were fed with an enteral solution. Four of them were subjected to experimental ileitis involving direct administration of trinitrobenzene sulfonic acid (TNBS) into the ileum (TNBS-treated group) and the other 4 were not treated (control group). Threonine fluxes across the portal-drained viscera (PDV) were quantified with the use of simultaneous i.g. L-[(15)N]threonine and i.v. L-[U-(13)C]threonine infusions. Ileal mucosa was sampled for mucin fractional synthesis rate measurement, which was greater in the TNBS-treated group (114 +/- 15%/d) than in the control group (61 +/- 8%/d) (P = 0.021). The first-pass extraction of dietary threonine by the PDV and liver did not differ between groups and accounted for approximately 27 and 10% of the intragastric delivery, respectively. PDV uptake of arterial threonine increased from 25 +/- 14 micromol x kg(-1) x h(-1) in the control group to 171 +/- 35 micromol x kg(-1) x h(-1) in the TNBS-treated group (P < 0.001). In conclusion, ileitis increased intestinal mucin synthesis and PDV utilization of threonine from arterial but not luminal supply. This leads to the mobilization of endogenous proteins to meet the increased threonine demand associated with acute intestinal inflammation.


Analytical Chemistry | 2008

Temperature-Programmed High-Performance Liquid Chromatography Coupled to Isotope Ratio Mass Spectrometry

Jean-Philippe Godin; Gérard Hopfgartner; Laurent B. Fay

The utility of liquid chromatography coupled to the isotope ratio mass spectrometry technique (LC-IRMS) has already been established through a variety of successful applications. However, the analytical constraint related to the use of aqueous mobile phases limits the LC separation mechanism. We report here a new strategy for high-precision (13)C isotopic analyses based on temperature-programmed LC-IRMS using aqueous mobile phases. Under these conditions, the isotopic precision and accuracy were studied. On one hand, experiments were carried out with phenolic acids using isothermal LC conditions at high temperature (170 degrees C); on the other hand, several experiments were performed by ramping the temperature, as conventionally used in a gas chromatography-based method with hydrosoluble fatty acids and pulses of CO 2 reference gas. In isothermal conditions at 170 degrees C, despite the increase of the CO 2 background, p-coumaric acid and its glucuronide conjugate gave reliable isotopic ratios compared to flow injection analysis-isotopic ratio mass spectrometry (FIA-IRMS) analyses (isotopic precision and accuracy are lower than 0.3 per thousand). On the opposite, for its sulfate conjugate, the isotopic accuracy is affected by its coelution with p-coumaric acid. Not surprisingly, this study also demonstrates that at high temperature (170 degrees C), a compound eluting with long residence time (i.e., ferulic acid) is degraded, affecting thus the delta (13)C (drift of 3 per thousand) and the peak area (compared to FIA-IRMS analysis at room temperature). Quantitation is also reported in isothermal conditions for p-coumaric acid in the range of 10-400 ng/mL and with benzoic acid as an internal standard. For temperature gradient LC-IRMS, in the area of the LC gradient (set up at 20 degrees C/min), the drift of the background observed produces a nonlinearity of SD (delta (13)C) approximately 0.01 per thousand/mV. To circumvent this drift, which impacts severely the precision and accuracy, an alternative approach, i.e., eluting the compound on the plateau of temperature studied was reported here. Other experiments with temperature-programmed LC-IRMS experiments are also reported with the presence of methanol in the injected solution to mimic residual solvent originating from the sample preparation or to slightly increase the solubility of the targeted compound for high-precision measurement.


Journal of Nutrition | 2013

A Whole-Grain–Rich Diet Reduces Urinary Excretion of Markers of Protein Catabolism and Gut Microbiota Metabolism in Healthy Men after One Week

Alastair B. Ross; Emma Peré-Trepat; Ivan Montoliu; François-Pierre Martin; Sebastiano Collino; Sofia Moco; Jean-Philippe Godin; Marilyn Cléroux; Philippe A. Guy; Isabelle Breton; Rodrigo Bibiloni; Anita Thorimbert; Isabelle Tavazzi; Lionel Tornier; Aude Bebuis; Stephen J. Bruce; Maurice Beaumont; Laurent-Bernard Fay; Sunil Kochhar

Epidemiological studies consistently find that diets rich in whole-grain (WG) cereals lead to decreased risk of disease compared with refined grain (RG)-based diets. Aside from a greater amount of fiber and micronutrients, possible mechanisms for why WGs may be beneficial for health remain speculative. In an exploratory, randomized, researcher-blinded, crossover trial, we measured metabolic profile differences between healthy participants eating a diet based on WGs compared with a diet based on RGs. Seventeen healthy adult participants (11 female, 6 male) consumed a controlled diet based on either WG-rich or RG-rich foods for 2 wk, followed by the other diet after a 5-wk washout period. Both diets were the same except for the use of WG (150 g/d) or RG foods. The metabolic profiles of plasma, urine, and fecal water were measured using (1)H-nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry (plasma only). After 1 wk of intervention, the WG diet led to decreases in urinary excretion of metabolites related to protein catabolism (urea, methylguanadine), lipid (carnitine and acylcarnitines) and gut microbial (4-hydroxyphenylacetate, trimethylacetate, dimethylacetate) metabolism in men compared with the same time point during the RG intervention. There were no differences between the interventions after 2 wk. Urinary urea, carnitine, and acylcarnitine were lower at wk 1 of the WG intervention relative to the RG intervention in all participants. Fecal water short-chain fatty acids acetate and butyrate were relatively greater after the WG diet compared to the RG diet. Although based on a small population and for a short time period, these observations suggest that a WG diet may affect protein metabolism.


Rapid Communications in Mass Spectrometry | 2009

Simultaneous analysis of 13C-glutathione as its dimeric form GSSG and its precursor [1-13C]glycine using liquid chromatography/isotope ratio mass spectrometry

Henk Schierbeek; Denise Rook; Frans W. J. te Braake; Kristien Y. Dorst; Gardi J. Voortman; Jean-Philippe Godin; Laurent-Bernard Fay; Johannes B. van Goudoever

Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In order to reduce sample volume and minimize analytical effort we developed a method to simultaneously determine (13)C-glutathione as its dimeric form (GSSG) and its precursor [1-(13)C]glycine in a small volume of erythrocytes in one single analysis. After having transformed (13)C-glutathione into its dimeric form GSSG, we determined both the intra-erythrocytic concentrations and the (13)C-isotopic enrichment of GSSG and glycine in 150 microL of whole blood using liquid chromatography coupled to LC/IRMS. The results show that the concentration (range of micromol/mL) was reliably measured using cycloleucine as internal standard, i.e. with a precision better than 0.1 micromol/mL. The (13)C-isotopic enrichment of GSSG and glycine measured in the same run gave reliable values with excellent precision (standard deviation (sd) <0.3 per thousand) and accuracy (measured between 0 and 5 APE). This novel method opens up a variety of kinetic studies with relatively low dose administration of tracers, reducing the total cost of the study design. In addition, only a minimal sample volume is required, enabling studies even in very small subjects, such as preterm infants.


Rapid Communications in Mass Spectrometry | 2011

The role of liquid chromatography and flow injection analyses coupled to isotope ratio mass spectrometry for studying human in vivo glucose metabolism.

Jean-Philippe Godin; Trent Stellingwerff; Lucas Actis-Goretta; Anne-France Mermoud; Sunil Kochhar; Serge Rezzi

Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.


Applied Physiology, Nutrition, and Metabolism | 2014

The effect of acute dark chocolate consumption on carbohydrate metabolism and performance during rest and exercise

Trent Stellingwerff; Jean-Philippe Godin; Chieh J. Chou; Dominik Grathwohl; Alastair B. Ross; Karen A. Cooper; Gary Williamson; Lucas Actis-Goretta

Consumption of cocoa-enriched dark chocolate (DC) has been shown to alter glucose and insulin concentration during rest and exercise compared with cocoa-depleted control (CON). However, the impact of DC consumption on exercise metabolism and performance is uncertain. Therefore, we investigated carbohydrate metabolism via stable isotope tracer techniques during exercise after subjects ingested either DC or CON. Sixteen overnight-fasted male cyclists performed a single-blinded, randomized, crossover design trial, after consuming either DC or CON at 2 h prior to 2.5 h of steady-state (SS) exercise (∼45% peak oxygen uptake). This was followed by an ∼15-min time-trial (TT) and 60 min of recovery. [6,6-(2)H2]Glucose and [U-(13)C]glucose were infused during SS to assess glucose rate of appearance (Ra) and disappearance (Rd). After DC consumption, plasma (-)-glucose and insulin concentrations were significantly (p < 0.001) elevated throughout vs. CON. During SS, there was no difference in [6,6-(2)H2]glucose Ra between treatments, but towards the end of SS (last 60 min) there was a ∼16% decrease in Rd in DC vs. CON (p < 0.05). Accordingly, after DC there was an ∼18% significant decrease in plasma glucose oxidation (trial effect; p = 0.032), and an ∼15% increase in tracer-derived muscle glycogen utilization (p = 0.045) late during SS exercise. The higher blood glucose concentrations during exercise and recovery after DC consumption coincided with high concentrations of epicatechin and (or) theobromine. In summary, DC consumption altered muscle carbohydrate partitioning, between muscle glucose uptake and glycogen oxidation, but did not effect cycling TT performance.


PLOS ONE | 2013

Natural carbon isotope abundance of plasma metabolites and liver tissue differs between diabetic and non-diabetic Zucker diabetic fatty rats.

Jean-Philippe Godin; Alastair B. Ross; Marilyn Cléroux; Etienne Pouteau; Ivan Montoliu; Mireille Moser; Sunil Kochhar

Background ‘You are what you eat’ is an accurate summary for humans and animals when it comes to carbon isotope abundance. In biological material, natural13C/12C ratio is subject to minute variations due to diet composition (mainly from ingestion of C3 and C4 metabolism plants) and to the discrimination between ‘light’ and ‘heavy’ isotopes during biochemical reactions (isotope effects and isotopic fractionation). Methodology/Principal Findings Carbon isotopic abundance was measured in ZDF (fa/+) and ZDF (fa/fa), (lean and obese-diabetic rats respectively) fed the same diet. By analysing plasma metabolites (glucose and non-esterified fatty acids), breath and liver tissue by high-precision isotope ratio mass spectrometry, we demonstrate for the first time statistically distinguishable metabolic carbon isotope abundance between ZDF (fa/+) and ZDF (fa/fa) rats based on plasma glucose, palmitic, oleic, linoleic, arachidonic acids and bulk analysis of liver tissue (P<0.005) resulting into clear isotopic fingerprints using principal component analysis. We studied the variation of isotopic abundance between both groups for each metabolite and through the metabolic pathways using the precursor/product approach. We confirmed that lipids were depleted in 13C compared to glucose in both genotypes. We found that isotopic abundance of linoleic acid (C18: 2n-6), even though both groups had the same feed, differed significantly between both groups. The likely reason for these changes between ZDF (fa/+) and ZDF (fa/fa) are metabolic dysregulation associated with various routing and fluxes of metabolites. Conclusion/Significance This work provides evidence that measurement of natural abundance isotope ratio of both bulk tissue and individual metabolites can provide meaningful information about metabolic changes either associated to phenotype or to genetic effects; irrespective of concentration. In the future measuring the natural abundance δ13C of key metabolites could be used as endpoints for studying in vivo metabolism, especially with regards to metabolic dysregulation, and development and progression of metabolic diseases.


Rapid Communications in Mass Spectrometry | 2009

Simultaneous measurement of 13C‐ and 15N‐isotopic enrichments of threonine by mass spectrometry

Jean-Philippe Godin; Anne-France Mermoud; Didier Rémond; Magali Faure; Denis Breuille; Gary Williamson; Emma Peré-Trepat; Ziad Ramadan; Laurent-Bernard Fay; Sunil Kochhar

Under conditions of high isotopic dilution, e.g. in a tracer study, the ability to determine accurately and quantitatively small variations in isotopic enrichments of differently labelled chemical compounds (e.g. (13)C and (15)N in threonine) in a single run by gas chromatography/mass spectrometry (GC/MS) is desirable but remains a technological challenge. Here, we report a new, rapid and simple GC/MS method for simultaneously measuring the isotopic enrichments of doubly labelled threonine ([U(13)C] and (15)N) with isotopic enrichment lower than 1.5 Molar Percent Excess (MPE). The long-term reproducibility measured was around 0.09 MPE for both tracers (throughout a 6 week period). The intra-day repeatability was lower than 0.05 and 0.06 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. To calculate both isotopic enrichments, two modes of calculations were used: one based on work by Rosenblatt et al. in 1992 and the other one using a matrix approach. Both methods gave similar results (ANOVA, P >0.05) with close precision for each mode of calculation. The GC/MS method was then used to investigate the differential utilization of threonine in different organs according to its route of administration in minipigs after administration of both tracers. In plasma samples, the lowest isotopic enrichment measured between two successive time points was at 0.01 and 0.02 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. Moreover, the accuracy of GC/MS (13)C-isotopic enrichment measured was validated by analyzing the same plasma samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Statistical analysis showed that both techniques gave the same results (ANOVA, P >0.05). This new GC/MS method offers the possibility to measure (13)C- and (15)N-isotopic enrichments with higher throughput, and using a lower amount of sample, than using GC/C/IRMS.

Collaboration


Dive into the Jean-Philippe Godin's collaboration.

Top Co-Authors

Avatar

Alastair B. Ross

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henk Schierbeek

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge