Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Philippe Vert is active.

Publication


Featured researches published by Jean-Philippe Vert.


international conference on machine learning | 2009

Group lasso with overlap and graph lasso

Laurent Jacob; Guillaume Obozinski; Jean-Philippe Vert

We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of co-variates defined a priori, or a set of covariates which tend to be connected to each other when a graph of covariates is given. We study theoretical properties of the estimator, and illustrate its behavior on simulated and breast cancer gene expression data.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2009

A Path Following Algorithm for the Graph Matching Problem

Mikhail Zaslavskiy; Francis R. Bach; Jean-Philippe Vert

We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.


Bioinformatics | 2008

Protein-ligand interaction prediction

Laurent Jacob; Jean-Philippe Vert

Motivation: Predicting interactions between small molecules and proteins is a crucial step to decipher many biological processes, and plays a critical role in drug discovery. When no detailed 3D structure of the protein target is available, ligand-based virtual screening allows the construction of predictive models by learning to discriminate known ligands from non-ligands. However, the accuracy of ligand-based models quickly degrades when the number of known ligands decreases, and in particular the approach is not applicable for orphan receptors with no known ligand. Results: We propose a systematic method to predict ligand–protein interactions, even for targets with no known 3D structure and few or no known ligands. Following the recent chemogenomics trend, we adopt a cross-target view and attempt to screen the chemical space against whole families of proteins simultaneously. The lack of known ligand for a given target can then be compensated by the availability of known ligands for similar targets. We test this strategy on three important classes of drug targets, namely enzymes, G-protein-coupled receptors (GPCR) and ion channels, and report dramatic improvements in prediction accuracy over classical ligand-based virtual screening, in particular for targets with few or no known ligands. Availability: All data and algorithms are available as Supplementary Material. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


BMC Bioinformatics | 2006

An accurate and interpretable model for siRNA efficacy prediction.

Jean-Philippe Vert; Nicolas Foveau; Christian Lajaunie; Yves Vandenbrouck

BackgroundThe use of exogenous small interfering RNAs (siRNAs) for gene silencing has quickly become a widespread molecular tool providing a powerful means for gene functional study and new drug target identification. Although considerable progress has been made recently in understanding how the RNAi pathway mediates gene silencing, the design of potent siRNAs remains challenging.ResultsWe propose a simple linear model combining basic features of siRNA sequences for siRNA efficacy prediction. Trained and tested on a large dataset of siRNA sequences made recently available, it performs as well as more complex state-of-the-art models in terms of potency prediction accuracy, with the advantage of being directly interpretable. The analysis of this linear model allows us to detect and quantify the effect of nucleotide preferences at particular positions, including previously known and new observations. We also detect and quantify a strong propensity of potent siRNAs to contain short asymmetric motifs in their sequence, and show that, surprisingly, these motifs alone contain at least as much relevant information for potency prediction as the nucleotide preferences for particular positions.ConclusionThe model proposed for prediction of siRNA potency is as accurate as a state-of-the-art nonlinear model and is easily interpretable in terms of biological features. It is freely available on the web at http://cbio.ensmp.fr/dsir


BMC Bioinformatics | 2007

Classification of microarray data using gene networks

Franck Rapaport; Andrei Zinovyev; Marie Dutreix; Emmanuel Barillot; Jean-Philippe Vert

BackgroundMicroarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks in order to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation.ResultsWe propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We illustrate the method with the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains.ConclusionIncluding a priori knowledge of a gene network for the analysis of gene expression data leads to good classification performance and improved interpretability of the results.


intelligent systems in molecular biology | 2004

Protein network inference from multiple genomic data: a supervised approach

Yoshihiro Yamanishi; Jean-Philippe Vert; Minoru Kanehisa

MOTIVATION An increasing number of observations support the hypothesis that most biological functions involve the interactions between many proteins, and that the complexity of living systems arises as a result of such interactions. In this context, the problem of inferring a global protein network for a given organism, using all available genomic data about the organism, is quickly becoming one of the main challenges in current computational biology. RESULTS This paper presents a new method to infer protein networks from multiple types of genomic data. Based on a variant of kernel canonical correlation analysis, its originality is in the formalization of the protein network inference problem as a supervised learning problem, and in the integration of heterogeneous genomic data within this framework. We present promising results on the prediction of the protein network for the yeast Saccharomyces cerevisiae from four types of widely available data: gene expressions, protein interactions measured by yeast two-hybrid systems, protein localizations in the cell and protein phylogenetic profiles. The method is shown to outperform other unsupervised protein network inference methods. We finally conduct a comprehensive prediction of the protein network for all proteins of the yeast, which enables us to propose protein candidates for missing enzymes in a biosynthesis pathway. AVAILABILITY Softwares are available upon request.


PLOS ONE | 2011

The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures.

Anne-Claire Haury; Pierre Gestraud; Jean-Philippe Vert

Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. In this study we compare feature selection methods on public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Surprisingly, complex wrapper and embedded methods generally do not outperform simple univariate feature selection methods, and ensemble feature selection has generally no positive effect. Overall a simple Students t-test seems to provide the best results.


Bioinformatics | 2011

Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization

Valentina Boeva; Andrei Zinovyev; Kevin Bleakley; Jean-Philippe Vert; Isabelle Janoueix-Lerosey; Olivier Delattre; Emmanuel Barillot

Summary: We present a tool for control-free copy number alteration (CNA) detection using deep-sequencing data, particularly useful for cancer studies. The tool deals with two frequent problems in the analysis of cancer deep-sequencing data: absence of control sample and possible polyploidy of cancer cells. FREEC (control-FREE Copy number caller) automatically normalizes and segments copy number profiles (CNPs) and calls CNAs. If ploidy is known, FREEC assigns absolute copy number to each predicted CNA. To normalize raw CNPs, the user can provide a control dataset if available; otherwise GC content is used. We demonstrate that for Illumina single-end, mate-pair or paired-end sequencing, GC-contentr normalization provides smooth profiles that can be further segmented and analyzed in order to predict CNAs. Availability: Source code and sample data are available at http://bioinfo-out.curie.fr/projects/freec/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Journal of Chemical Information and Modeling | 2005

Graph kernels for molecular structure-activity relationship analysis with support vector machines.

Pierre Mahé; Nobuhisa Ueda; Tatsuya Akutsu; Jean-Luc Perret; Jean-Philippe Vert

The support vector machine algorithm together with graph kernel functions has recently been introduced to model structure-activity relationships (SAR) of molecules from their 2D structure, without the need for explicit molecular descriptor computation. We propose two extensions to this approach with the double goal to reduce the computational burden associated with the model and to enhance its predictive accuracy: description of the molecules by a Morgan index process and definition of a second-order Markov model for random walks on 2D structures. Experiments on two mutagenicity data sets validate the proposed extensions, making this approach a possible complementary alternative to other modeling strategies.


BMC Systems Biology | 2012

TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

Anne-Claire Haury; Fantine Mordelet; Paola Vera-Licona; Jean-Philippe Vert

BackgroundInferring the structure of gene regulatory networks (GRN) from a collection of gene expression data has many potential applications, from the elucidation of complex biological processes to the identification of potential drug targets. It is however a notoriously difficult problem, for which the many existing methods reach limited accuracy.ResultsIn this paper, we formulate GRN inference as a sparse regression problem and investigate the performance of a popular feature selection method, least angle regression (LARS) combined with stability selection, for that purpose. We introduce a novel, robust and accurate scoring technique for stability selection, which improves the performance of feature selection with LARS. The resulting method, which we call TIGRESS (for Trustful Inference of Gene REgulation with Stability Selection), was ranked among the top GRN inference methods in the DREAM5 gene network inference challenge. In particular, TIGRESS was evaluated to be the best linear regression-based method in the challenge. We investigate in depth the influence of the various parameters of the method, and show that a fine parameter tuning can lead to significant improvements and state-of-the-art performance for GRN inference, in both directed and undirected settings.ConclusionsTIGRESS reaches state-of-the-art performance on benchmark data, including both in silico and in vivo (E. coli and S. cerevisiae) networks. This study confirms the potential of feature selection techniques for GRN inference. Code and data are available on http://cbio.ensmp.fr/tigress. Moreover, TIGRESS can be run online through the GenePattern platform (GP-DREAM, http://dream.broadinstitute.org).

Collaboration


Dive into the Jean-Philippe Vert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis R. Bach

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferhat Ay

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge