Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Pierre Furet is active.

Publication


Featured researches published by Jean-Pierre Furet.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients

Harry Sokol; Bénédicte Pigneur; Laurie Watterlot; Omar Lakhdari; Luis G. Bermúdez-Humarán; Jean-Jacques Gratadoux; Sébastien Blugeon; Chantal Bridonneau; Jean-Pierre Furet; Gérard Corthier; Corinne Grangette; Nadia Vasquez; Philippe Pochart; Germain Trugnan; Ginette Thomas; Hervé M. Blottière; Joël Doré; Philippe Marteau; Philippe Seksik; Philippe Langella

A decrease in the abundance and biodiversity of intestinal bacteria within the dominant phylum Firmicutes has been observed repeatedly in Crohn disease (CD) patients. In this study, we determined the composition of the mucosa-associated microbiota of CD patients at the time of surgical resection and 6 months later using FISH analysis. We found that a reduction of a major member of Firmicutes, Faecalibacterium prausnitzii, is associated with a higher risk of postoperative recurrence of ileal CD. A lower proportion of F. prausnitzii on resected ileal Crohn mucosa also was associated with endoscopic recurrence at 6 months. To evaluate the immunomodulatory properties of F. prausnitzii we analyzed the anti-inflammatory effects of F. prausnitzii in both in vitro (cellular models) and in vivo [2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced] colitis in mice. In Caco-2 cells transfected with a reporter gene for NF-κB activity, F. prausnitzii had no effect on IL-1β-induced NF-κB activity, whereas the supernatant abolished it. In vitro peripheral blood mononuclear cell stimulation by F. prausnitzii led to significantly lower IL-12 and IFN-γ production levels and higher secretion of IL-10. Oral administration of either live F. prausnitzii or its supernatant markedly reduced the severity of TNBS colitis and tended to correct the dysbiosis associated with TNBS colitis, as demonstrated by real-time quantitative PCR (qPCR) analysis. F. prausnitzii exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-κB activation and IL-8 production. These results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment.


Inflammatory Bowel Diseases | 2009

Low Counts of Faecalibacterium prausnitzii in Colitis Microbiota

Harry Sokol; P. Seksik; Jean-Pierre Furet; Olivier Firmesse; Isabelle Nion-Larmurier; Laurent Beaugerie; Jacques Cosnes; Gérard Corthier; P. Marteau; Joël Doré

Background: The intestinal microbiota is suspected to play a role in colitis and particularly in inflammatory bowel disease (IBD) pathogenesis. The aim was to compare the fecal microbiota composition of patients with colitis to that of healthy subjects (HS). Methods: fecal samples from 22 active Crohns disease (A‐CD) patients, 10 CD patients in remission (R‐CD), 13 active ulcerative colitis (A‐UC) patients, 4 UC patients in remission (R‐UC), 8 infectious colitis (IC) patients, and 27 HS were analyzed by quantitative real‐time polymerase chain reaction (PCR) targeting the 16S rRNA gene. Bacterial counts were transformed to logarithms (Log10 CFU) for statistical analysis. Results: Bacteria of the phylum Firmicutes (Clostridium leptum and Clostridium coccoides groups) were less represented in A‐IBD patients (9.7; P = 0.004) and IC (9.4; P = 0.02), compared to HS (10.8). Faecalibacterium prausnitzii species (a major representative of the C. leptum group) had lower counts in A‐IBD and IC patients compared to HS (8.8 and 8.3 versus 10.4; P = 0.0004 and P = 0.003). The Firmicutes/Bacteroidetes ratio was lower in A‐IBD (1.3; P = 0.0001) and IC patients (0.4; P = 0.002). Compared to HS, Bifidobacteria were less represented in A‐IBD and IC (7.9 and 7.7 versus 9.2; P = 0.001 and P = 0.01). Conclusions: The fecal microbiota of patients with IBD differs from that of HS. The phylum Firmicutes and particularly the species F. prausnitzii, are underrepresented in A‐IBD patients as well as in IC patients. These bacteria could be crucial to gut homeostasis since lower counts of F. prausnitzii are consistently associated with a reduced protection of the gut mucosa. (Inflamm Bowel Dis 2009)


Environmental Microbiology | 2009

Towards the human intestinal microbiota phylogenetic core.

Julien Tap; Stanislas Mondot; Florence Levenez; Eric Pelletier; Christophe Caron; Jean-Pierre Furet; Edgardo Ugarte; Rafael Muñoz-Tamayo; Denis L. E. Paslier; Renaud Nalin; Joël Doré; Marion Leclerc

The paradox of a host specificity of the human faecal microbiota otherwise acknowledged as characterized by global functionalities conserved between humans led us to explore the existence of a phylogenetic core. We investigated the presence of a set of bacterial molecular species that would be altogether dominant and prevalent within the faecal microbiota of healthy humans. A total of 10 456 non-chimeric bacterial 16S rRNA sequences were obtained after cloning of PCR-amplified rDNA from 17 human faecal DNA samples. Using alignment or tetranucleotide frequency-based methods, 3180 operational taxonomic units (OTUs) were detected. The 16S rRNA sequences mainly belonged to the phyla Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrumicrobia (0.1%). Interestingly, while most of OTUs appeared individual-specific, 2.1% were present in more than 50% of the samples and accounted for 35.8% of the total sequences. These 66 dominant and prevalent OTUs included members of the genera Faecalibacterium, Ruminococcus, Eubacterium, Dorea, Bacteroides, Alistipes and Bifidobacterium. Furthermore, 24 OTUs had cultured type strains representatives which should be subjected to genome sequence with a high degree of priority. Strikingly, 52 of these 66 OTUs were detected in at least three out of four recently published human faecal microbiota data sets, obtained with very different experimental procedures. A statistical model confirmed these OTUs prevalence. Despite the species richness and a high individual specificity, a limited number of OTUs is shared among individuals and might represent the phylogenetic core of the human intestinal microbiota. Its role in human health deserves further study.


Nature Genetics | 2001

A 11.7-kb deletion triggers intersexuality and polledness in goats.

Eric Pailhoux; Bernard Vigier; Stéphane Chaffaux; Nathalie Servel; Sead Taourit; Jean-Pierre Furet; Marc Fellous; F. Grosclaude; Edmond Cribiu; Corinne Cotinot; D. Vaiman

Mammalian sex determination is governed by the presence of the sex determining region Y gene (SRY) on the Y chromosome. Familial cases of SRY-negative XX sex reversal are rare in humans, often hampering the discovery of new sex-determining genes. The mouse model is also insufficient to correctly apprehend the sex-determination cascade, as the human pathway is much more sensitive to gene dosage. Other species might therefore be considered in this respect. In goats, the polled intersex syndrome (PIS) mutation associates polledness and intersexuality. The sex reversal affects exclusively the XX individuals in a recessive manner, whereas the absence of horns is dominant in both sexes. The syndrome is caused by an autosomal gene located at chromosome band 1q43 (ref. 9), shown to be homologous to human chromosome band 3q23 (ref. 10). Through a positional cloning approach, we demonstrate that the mutation underlying PIS is the deletion of a critical 11.7-kb DNA element containing mainly repetitive sequences. This deletion affects the transcription of at least two genes: PISRT1, encoding a 1.5-kb mRNA devoid of open reading frame (ORF), and FOXL2, recently shown to be responsible for blepharophimosis ptosis epicanthus inversus syndrome (BPES) in humans. These two genes are located 20 and 200 kb telomeric from the deletion, respectively.


FEMS Microbiology Ecology | 2009

Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR

Jean-Pierre Furet; Olivier Firmesse; Michele Gourmelon; Chantal Bridonneau; Julien Tap; Stanislas Mondot; Joël Doré; Gérard Corthier

Pollution of the environment by human and animal faecal pollution affects the safety of shellfish, drinking water and recreational beaches. To pinpoint the origin of contaminations, it is essential to define the differences between human microbiota and that of farm animals. A strategy based on real-time quantitative PCR (qPCR) assays was therefore developed and applied to compare the composition of intestinal microbiota of these two groups. Primers were designed to quantify the 16S rRNA gene from dominant and subdominant bacterial groups. TaqMan probes were defined for the qPCR technique used for dominant microbiota. Human faecal microbiota was compared with that of farm animals using faecal samples collected from rabbits, goats, horses, pigs, sheep and cows. Three dominant bacterial groups (Bacteroides/Prevotella, Clostridium coccoides and Bifidobacterium) of the human microbiota showed differential population levels in animal species. The Clostridium leptum group showed the lowest differences among human and farm animal species. Human subdominant bacterial groups were highly variable in animal species. Partial least squares regression indicated that the human microbiota could be distinguished from all farm animals studied. This culture-independent comparative assessment of the faecal microbiota between humans and farm animals will prove useful in identifying biomarkers of human and animal faecal contaminations that can be applied to microbial source tracking methods.


Applied and Environmental Microbiology | 2009

Estimation of Pig Fecal Contamination in a River Catchment by Real-Time PCR Using Two Pig-Specific Bacteroidales 16S rRNA Genetic Markers

Sophie Mieszkin; Jean-Pierre Furet; Gérard Corthier; Michele Gourmelon

ABSTRACT The microbiological quality of coastal or river water can be affected by fecal contamination from human or animal sources. To discriminate pig fecal pollution from other pollution, a library-independent microbial source tracking method targeting Bacteroidales host-specific 16S rRNA gene markers by real-time PCR was designed. Two pig-specific Bacteroidales markers (Pig-1-Bac and Pig-2-Bac) were designed using 16S rRNA gene Bacteroidales clone libraries from pig feces and slurry. For these two pig markers, 98 to 100% sensitivity and 100% specificity were obtained when tested by TaqMan real-time PCR. A decrease in the concentrations of Pig-1-Bac and Pig-2-Bac markers was observed throughout the slurry treatment chain. The two newly designed pig-specific Bacteroidales markers, plus the human-specific (HF183) and ruminant-specific (BacR) Bacteroidales markers, were then applied to river water samples (n = 24) representing 14 different sites from the French Daoulas River catchment (Brittany, France). Pig-1-Bac and Pig-2-Bac were quantified in 25% and 62.5%, respectively, of samples collected around pig farms, with concentrations ranging from 3.6 to 4.1 log10 copies per 100 ml of water. They were detected in water samples collected downstream from pig farms but never detected near cattle farms. HF183 was quantified in 90% of water samples collected downstream near Daoulas town, with concentrations ranging between 3.6 and 4.4 log10 copies per 100 ml of water, and BacR in all water samples collected around cattle farms, with concentrations ranging between 4.6 and 6.0 log10 copies per 100 ml of water. The results of this study highlight that pig fecal contamination was not as frequent as human or bovine fecal contamination and that fecal pollution generally came from multiple origins. The two pig-specific Bacteroidales markers can be applied to environmental water samples to detect pig fecal pollution.


British Journal of Nutrition | 2006

Effects of orally administered Lactobacillus casei DN-114 001 on the composition or activities of the dominant faecal microbiota in healthy humans

Violaine Rochet; Lionel Rigottier-Gois; Malène Sutren; Marie-Noëlle Krementscki; Claude Andrieux; Jean-Pierre Furet; Patrick Tailliez; Florence Levenez; Agnès Mogenet; Jean-Louis Bresson; Séverine Meance; Chantal Cayuela; Antony Leplingard; Joël Doré

The composition and activities of the faecal microbiota in twelve healthy subjects analysed in a single open study were monitored before (1-week baseline step), during (10 d supplementation step) and after (10 d follow-up step) the ingestion of a fermented milk containing Lactobacillus casei DN-114 001. Fluorescent in situ hybridisation with group-specific DNA probes, real-time PCR using L. paracasei group-specific primers and temporal temperature gradient gel electrophoresis (TTGE) using group-specific primers were carried out, together with bacterial enzyme activity and metabolite analyses to monitor the structure and activities of the faecal microbiota. L. casei DNA was detected in the faeces of all of the subjects by TTGE after 10 d supplementation. Its quantification by real-time PCR showed a 1000-fold increase during the test step compared with initial levels. No major modification in either the dominant members of the faecal microbiota or their activities was observed during the trial. In conclusion, the short-term consumption of a milk product containing L. casei DN-114 001 was accompanied by a high, transient increase in the quantity of this strain in the faeces of all of the subjects without markedly affecting biochemical or bacteriological factors.


Biochimie | 1987

Complete nucleotide sequence of bovine α-lactalbumin gene: comparison with its rat counterpart

Jean-Luc Vilotte; Solange Soulier; Jean-Claude Mercier; Pierre Gaye; Dominique Hue-Delahaie; Jean-Pierre Furet

Abstract The nucleotide sequence of the bovine α-lactalbumin gene, whose organization is very similar to that of its rat counterpart, was deduced from the analysis of 2 λ clones isolated from a HindIII genomic bank. The 3090 sequenced nucleotides comprise 738 bp upstream from the transcription unit (∼2 kb) which contains 4 exons of 160, 159, 76 and 330 bp separated by 3 introns of 321, 473 and 504 bp. Comparison with the rat α-lactalbumin gene shows similar percentages of homology between the 4 cognate exons. Since only the first three exons are homologous to the corresponding exons of the lysozyme gene, it is suggested that the 4th exons of α-lactalbumin and lysozyme genes have different origins. The bovine α-lactalbumin mRNA is 725 nucleotides long, excluding the poly(A) tail. The reading frame and the flanking 5′ and 3′ untranslated regions contain 429, 27 and 269 nucleotides, respectively. The derived amino acid sequence differs at 10 positions from that determined directly on mature α-lactalbumin.


Annals of the Rheumatic Diseases | 2017

Faecal microbiota study reveals specific dysbiosis in spondyloarthritis

Maxime Breban; Julien Tap; Ariane Leboime; Roula Said-Nahal; Philippe Langella; Gilles Chiocchia; Jean-Pierre Furet; Harry Sokol

Objective Altered microbiota composition or dysbiosis is suspected to be implicated in the pathogenesis of chronic inflammatory diseases, such as spondyloarthritis (SpA) and rheumatoid arthritis (RA). Methods 16S ribosomal RNA gene sequencing was performed on faecal DNA isolated from stool samples in two consecutive cross-sectional cohorts, each comprising three groups of adult volunteers: SpA, RA and healthy controls (HCs). In the second study, HCs comprised a majority of aged-matched siblings of patients with known HLA-B27 status. Alpha and beta diversities were assessed using QIIME, and comparisons were performed using linear discriminant analysis effect size to examine differences between groups. Results In both cohorts, dysbiosis was evidenced in SpA and RA, as compared with HCs, and was disease specific. A restriction of microbiota biodiversity was detected in both disease groups. The most striking change was a twofold to threefold increased abundance of Ruminococcus gnavus in SpA, as compared with both RA and HCs that was significant in both studies and positively correlated with disease activity in patients having a history of inflammatory bowel disease (IBD). Among HCs, significant difference in microbiota composition were also detected between HLA-B27+ and HLA-B27 negative siblings, suggesting that genetic background may influence gut microbiota composition. Conclusion Our results suggest that distinctive dysbiosis characterise both SpA and RA and evidence a reproducible increase in R. gnavus that appears specific for SpA and a marker of disease activity. This observation is consistent with the known proinflammatory role of this bacteria and its association with IBD. It may provide an explanation for the link that exists between SpA and IBD.


Journal of Molecular Microbiology and Biotechnology | 2008

Lactobacillus rhamnosus R11 Consumed in a Food Supplement Survived Human Digestive Transit without Modifying Microbiota Equilibrium as Assessed by Real-Time Polymerase Chain Reaction

Olivier Firmesse; Agnès Mogenet; Jean-Louis Bresson; Gérard Corthier; Jean-Pierre Furet

The aim of this study was to evaluate the survival of Lactobacillus rhamnosus R11 and Lactobacillus acidophilus R52 in the human digestive tract and their effects on the microbiota homeostasis. We designed an open human trial including 14 healthy volunteers. A 3-week exclusion period of fermented products was followed by a 12-day consumption period of 4 capsules daily containing 2 × 109L. rhamnosus R11 and 1 × 108L. acidophilus R52, and a 12-day wash-out period. The 2 strains and dominant bacterial groups of the microbiota were quantified by real-time polymerase chain reaction. At the end of the capsule consumption period, high levels of L. rhamnosus R11 were detected in faecal samples from all volunteers, reaching a mean value of 7.1 log10 colony-forming unit (CFU) equivalents/g of stool. L. acidophilus R52 was detected in the stools of only 1 volunteer, reaching a maximum level of 6.1 log10 CFU equivalents/g of stool. Dilution plating enumerations performed in parallel provided less consistent and generally lower levels. No significant effect of capsule consumption was observed on microbiota homeostasis for the dominant faecal populations. Mean values of 8.8, 9.2, 9.9 and 10.6 log10 CFU equivalents/g of stool were obtained for the Clostridium coccoides, Bifidobacterium sp., Bacteroides sp. and Clostridium leptum groups, respectively.

Collaboration


Dive into the Jean-Pierre Furet's collaboration.

Top Co-Authors

Avatar

Gérard Corthier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joël Doré

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Julien Tap

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Olivier Firmesse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Harry Sokol

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Philippe Langella

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

D. Vaiman

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique Hue-Delahaie

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edmond Cribiu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge