Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Pierre Lin is active.

Publication


Featured researches published by Jean-Pierre Lin.


Nature Genetics | 2012

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Gillian I. Rice; Paul R. Kasher; Gabriella M.A. Forte; Niamh M. Mannion; Sam M. Greenwood; Marcin Szynkiewicz; Jonathan E. Dickerson; Sanjeev Bhaskar; Massimiliano Zampini; Tracy A. Briggs; Emma M. Jenkinson; Carlos A. Bacino; Roberta Battini; Enrico Bertini; Paul A. Brogan; Louise Brueton; Marialuisa Carpanelli; Corinne De Laet; Pascale de Lonlay; Mireia del Toro; Isabelle Desguerre; Elisa Fazzi; Angels García-Cazorla; Arvid Heiberg; Masakazu Kawaguchi; Ram Kumar; Jean-Pierre Lin; Charles Marques Lourenço; Alison Male; Wilson Marques

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Lancet Neurology | 2013

Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: A case-control study

Gillian I. Rice; Gabriella M.A. Forte; Marcin Szynkiewicz; Diana Chase; Alec Aeby; Mohamed S. Abdel-Hamid; Sam Ackroyd; Rebecca L Allcock; Kathryn M. Bailey; Umberto Balottin; Christine Barnerias; Geneviève Bernard; C. Bodemer; Maria P. Botella; Cristina Cereda; Kate Chandler; Lyvia Dabydeen; Russell C. Dale; Corinne De Laet; Christian de Goede; Mireia del Toro; Laila Effat; Noemi Nunez Enamorado; Elisa Fazzi; Blanca Gener; Madli Haldre; Jean-Pierre Lin; John H. Livingston; Charles Marques Lourenço; Wilson Marques

BACKGROUND Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. METHODS In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. FINDINGS 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14-20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57-1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=-0·604; serum, r=-0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. INTERPRETATION AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. FUNDING European Unions Seventh Framework Programme; European Research Council.


Developmental Medicine & Child Neurology | 2002

Botulinum toxin treatment of spasticity in diplegic cerebral palsy: a randomized, double-blind, placebo-controlled, dose-ranging study

Richard Baker; M Jasinski; I Maciag-Tymecka; J Michalowska-Mrozek; M Bonikowski; Lucinda Carr; J. G. B. MacLean; Jean-Pierre Lin; B Lynch; Tim Theologis; J Wendorff; P Eunson; Aidan Cosgrove

This study evaluated the efficacy and safety of three doses of botulinum toxin A (BTX‐A; Dysport) in 125 patients (mean age 5.2 years, SD 2; 54% male)with dynamic equinus spasticity during walking. Participants were randomized to receive Dysport (10, 20, or 30 units/kg) or placebo to the gastrocnemius muscle of both legs. Muscle length was calculated from electrogoniometric measurements and the change in the dynamic component of gastrocnemius shortening at four weeks was prospectively identified as the primary outcome measure. All treatment groups showed statistically significant decreases in dynamic component compared with placebo at 4 weeks. Mean improvement in dynamic component was most pronounced in the 20 units/kg group, being equivalent to an increase in dorsiflexion with the knee extended at 1920, and was still present at 16 weeks. The safety profile of the toxin appears satisfactory.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Paediatric autoimmune encephalopathies: clinical features, laboratory investigations and outcomes in patients with or without antibodies to known central nervous system autoantigens

Yael Hacohen; Sukhvir Wright; Patrick Waters; Shakti Agrawal; Lucinda Carr; Helen Cross; Carlos de Sousa; Catherine DeVile; Penny Fallon; Rajat Gupta; Tamasine Hedderly; Elaine Hughes; Tim Kerr; Karine Lascelles; Jean-Pierre Lin; Sunny Philip; Keith Pohl; Prab Prabahkar; Martin Smith; Ruth Williams; Antonia Clarke; Cheryl Hemingway; Evangeline Wassmer; Angela Vincent; Ming Lim

Objective To report the clinical and investigative features of children with a clinical diagnosis of probable autoimmune encephalopathy, both with and without antibodies to central nervous system antigens. Method Patients with encephalopathy plus one or more of neuropsychiatric symptoms, seizures, movement disorder or cognitive dysfunction, were identified from 111 paediatric serum samples referred from five tertiary paediatric neurology centres to Oxford for antibody testing in 2007–2010. A blinded clinical review panel identified 48 patients with a diagnosis of probable autoimmune encephalitis whose features are described. All samples were tested/retested for antibodies to N-methyl-D-aspartate receptor (NMDAR), VGKC-complex, LGI1, CASPR2 and contactin-2, GlyR, D1R, D2R, AMPAR, GABA(B)R and glutamic acid decarboxylase. Results Seizures (83%), behavioural change (63%), confusion (50%), movement disorder (38%) and hallucinations (25%) were common. 52% required intensive care support for seizure control or profound encephalopathy. An acute infective organism (15%) or abnormal cerebrospinal fluid (32%), EEG (70%) or MRI (37%) abnormalities were found. One 14-year-old girl had an ovarian teratoma. Serum antibodies were detected in 21/48 (44%) patients: NMDAR 13/48 (27%), VGKC-complex 7/48(15%) and GlyR 1/48(2%). Antibody negative patients shared similar clinical features to those who had specific antibodies detected. 18/34 patients (52%) who received immunotherapy made a complete recovery compared to 4/14 (28%) who were not treated; reductions in modified Rankin Scale for children scores were more common following immunotherapies. Antibody status did not appear to influence the treatment effect. Conclusions Our study outlines the common clinical and paraclinical features of children and adolescents with probable autoimmune encephalopathies. These patients, irrespective of positivity for the known antibody targets, appeared to benefit from immunotherapies and further antibody targets may be defined in the future.


Movement Disorders | 2014

N-Methyl-D-Aspartate Receptor Antibodies in Post-Herpes Simplex Virus Encephalitis Neurological Relapse

Yael Hacohen; Kumaran Deiva; Phillipa Pettingill; Patrick Waters; Ata Siddiqui; Pascale Chrétien; Esse Menson; Jean-Pierre Lin; Marc Tardieu; Angela Vincent; Ming Lim

Herpes simplex virus encephalitis (HSVE) is a devastating condition that relapses, often with a chorea in children, despite adequate antiviral treatment. At relapse, evidence of viral replication is frequently absent, suggesting that the relapse may be immune‐mediated. Seven children who had a neurological relapse following their initial encephalitis, identified from 20 cases of pediatric HSVE, were studied. Serum and/or cerebrospinal fluid (CSF) were tested for N‐methyl‐D‐aspartate receptor (NMDAR) and other antibodies previously reported in central nervous system autoimmunity. Five of the 7 relapsing children had choreoathetosis; 2 of these were NMDAR antibody–positive, 2 were negative (1 with HSV‐positive CSF), and 1 was not available for testing. An additional patient, who relapsed with cognitive regression but with no movement disorder, was also NMDAR antibody–positive. In 2 of the NMDAR antibody–positive patients who were treated at relapse and in 1 who was treated only after 10 years of having a relapsing encephalopathy, a beneficial response was observed. Neurological relapses after HSVE may frequently be immune‐mediated, particularly in children with chorea. NMDAR antibodies are common, and immunotherapy may be beneficial.


American Journal of Human Genetics | 2010

Brown-Vialetto-Van Laere Syndrome, a Ponto-Bulbar Palsy with Deafness, Is Caused by Mutations in C20orf54

Peter M. Green; Matthew Wiseman; Yanick J. Crow; Henry Houlden; Shelley Riphagen; Jean-Pierre Lin; F. Lucy Raymond; Anne Marie Childs; Eamonn Sheridan; Sian E. Edwards; Dragana Josifova

Brown-Vialetto-Van Laere syndrome is a rare neurological disorder with a variable age at onset and clinical course. The key features are progressive ponto-bulbar palsy and bilateral sensorineural deafness. A complex neurological phenotype with a mixed picture of upper and lower motor neuron involvement reminiscent of amyotrophic lateral sclerosis evolves with disease progression. We identified a candidate gene, C20orf54, by studying a consanguineous family with multiple affected individuals and subsequently demonstrated that mutations in this gene were the cause of disease in other, unrelated families.


American Journal of Medical Genetics Part A | 2006

Polymicrogyria and deletion 22q11.2 syndrome: window to the etiology of a common cortical malformation.

Nathaniel H. Robin; Clare Taylor; Donna M. McDonald-McGinn; Elaine H. Zackai; Peter M. Bingham; Kevin Collins; Dawn Earl; Deepak Gill; Tiziana Granata; Renzo Guerrini; Naomi Katz; Virginia E. Kimonis; Jean-Pierre Lin; David R. Lynch; Shehla Mohammed; R.F. Massey; Marie McDonald; R. Curtis Rogers; Miranda Splitt; Cathy A. Stevens; Marc D. Tischkowitz; Neil Stoodley; Richard J. Leventer; Daniela T. Pilz; William B. Dobyns

Several brain malformations have been described in rare patients with the deletion 22q11.2 syndrome (DEL22q11) including agenesis of the corpus callosum, pachygyria or polymicrogyria (PMG), cerebellar anomalies and meningomyelocele, with PMG reported most frequently. In view of our interest in the causes of PMG, we reviewed clinical data including brain‐imaging studies on 21 patients with PMG associated with deletion 22q11.2 and another 11 from the literature. We found that the cortical malformation consists of perisylvian PMG of variable severity and frequent asymmetry with a striking predisposition for the right hemisphere (P = 0.008). This and other observations suggest that the PMG may be a sequela of abnormal embryonic vascular development rather than a primary brain malformation. We also noted mild cerebellar hypoplasia or mega‐cisterna magna in 8 of 24 patients. Although this was not the focus of the present study, mild cerebellar anomalies are probably the most common brain malformation associated with DEL22q11.


Neuromuscular Disorders | 2010

Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations.

Fatemeh Geranmayeh; Emma Clement; L. Feng; C. Sewry; Judith Pagan; Rachael Mein; Stephen Abbs; Louise Brueton; Anne-Marie Childs; Heinz Jungbluth; Christian de Goede; Bryan Lynch; Jean-Pierre Lin; G. Chow; Carlos de Sousa; Olivia O’Mahony; Anirban Majumdar; Volker Straub; Kate Bushby; Francesco Muntoni

Merosin deficient congenital muscular dystrophy 1A (MDC1A) results from mutations in the LAMA2 gene. We report 51 patients with MDC1A and examine the relationship between degree of merosin expression, genotype and clinical features. Thirty-three patients had absence of merosin and 13 showed some residual merosin. Compared to the residual merosin group, patients with absent merosin had an earlier presentation (<7days) (P=0.0073), were more likely to lack independent ambulation (P=0.0215), or require enteral feeding (P=0.0099) and ventilatory support (P=0.0354). We identified 33 novel LAMA2 mutations; these were distributed throughout the gene in patients with absent merosin, with minor clusters in exon 27, 14, 25 and 26 (55% of mutations). Patients with residual merosin often carried at least one splice site mutation and less frequently frameshift mutations. This large study identified novel LAMA2 mutations and highlights the role of immunohistochemical studies for merosin status in predicting clinical severity of MDC1A.


Brain | 2014

Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

A. Reghan Foley; Manoj P. Menezes; Amelie Pandraud; Michael Gonzalez; Ahmad Al-Odaib; Alexander J. Abrams; Kumiko Sugano; Atsushi Yonezawa; Adnan Y. Manzur; Joshua Burns; Imelda Hughes; B. Gary McCullagh; Heinz Jungbluth; Ming Lim; Jean-Pierre Lin; André Mégarbané; J. Andoni Urtizberea; Ayaz H. Shah; Jayne Antony; Richard Webster; Alexander Broomfield; Joanne Ng; Ann Agnes Mathew; James J. O’Byrne; Eva Forman; M. Scoto; Manish Prasad; Katherine O’Brien; S. E. Olpin; Marcus Oppenheim

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


Journal of Clinical Investigation | 2001

Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita.

Sharon Brownlow; R. Webster; Rebecca Croxen; Martin Brydson; Brian Neville; Jean-Pierre Lin; Angela Vincent; John Newsom-Davis; David Beeson

Limitation of movement during fetal development may lead to multiple joint contractures in the neonate, termed arthrogryposis multiplex congenita. Neuromuscular disorders are among the many different causes of reduced fetal movement. Many congenital myasthenic syndromes (CMSs) are due to mutations of the adult-specific epsilon subunit of the acetylcholine receptor (AChR), and, thus, functional deficits do not arise until late in gestation. However, an earlier effect on the fetus might be predicted with some defects of other AChR subunits. We studied a child who presented at birth with joint contractures and was subsequently found to have a CMS. Mutational screening revealed heteroallelic mutation within the AChR delta subunit gene, delta 756ins2 and delta E59K. Expression studies demonstrate that delta 756ins2 is a null mutation. By contrast, both fetal and adult AChR containing delta E59K have shorter than normal channel activations that predict fast decay of endplate currents. Thus, delta E59K causes dysfunction of fetal as well as the adult AChR and would explain the presence of joint contractures on the basis of reduced fetal movement. This is the first report of the association of AChR gene mutations with arthrogryposis multiplex congenita. It is probable that mutations that severely disrupt function of fetal AChR will underlie additional cases.

Collaboration


Dive into the Jean-Pierre Lin's collaboration.

Top Co-Authors

Avatar

Daniel E. Lumsden

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Lim

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret Kaminska

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kylee Tustin

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Manju A. Kurian

Great Ormond Street Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge