Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean Y. Tang is active.

Publication


Featured researches published by Jean Y. Tang.


The New England Journal of Medicine | 2012

Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome.

Jean Y. Tang; Julian Mackay-Wiggan; Michelle Aszterbaum; Robert L. Yauch; Joselyn Lindgren; Kris S. Chang; Carol Coppola; Anita M. Chanana; Jackleen Marji; David R. Bickers; Ervin H. Epstein

BACKGROUND Dysregulated hedgehog signaling is the pivotal molecular abnormality underlying basal-cell carcinomas. Vismodegib is a new orally administered hedgehog-pathway inhibitor that produces objective responses in locally advanced and metastatic basal-cell carcinomas. METHODS We tested the anti-basal-cell carcinoma efficacy of vismodegib in a randomized, double-blind, placebo-controlled trial in patients with the basal-cell nevus syndrome at three clinical centers from September 2009 through January 2011. The primary end point was reduction in the incidence of new basal-cell carcinomas that were eligible for surgical resection (surgically eligible) with vismodegib versus placebo after 3 months; secondary end points included reduction in the size of existing basal-cell carcinomas. RESULTS In 41 patients followed for a mean of 8 months (range, 1 to 15) after enrollment, the per-patient rate of new surgically eligible basal-cell carcinomas was lower with vismodegib than with placebo (2 vs. 29 cases per group per year, P<0.001), as was the size (percent change from baseline in the sum of the longest diameter) of existing clinically significant basal-cell carcinomas (-65% vs. -11%, P=0.003). In some patients, all basal-cell carcinomas clinically regressed. No tumors progressed during treatment with vismodegib. Patients receiving vismodegib routinely had grade 1 or 2 adverse events of loss of taste, muscle cramps, hair loss, and weight loss. Overall, 54% of patients (14 of 26) receiving vismodegib discontinued drug treatment owing to adverse events. At 1 month, vismodegib use had reduced the hedgehog target-gene expression by basal-cell carcinoma by 90% (P<0.001) and diminished tumor-cell proliferation, but apoptosis was not affected. No residual basal-cell carcinoma was detectable in 83% of biopsy samples taken from sites of clinically regressed basal-cell carcinomas. CONCLUSIONS Vismodegib reduces the basal-cell carcinoma tumor burden and blocks growth of new basal-cell carcinomas in patients with the basal-cell nevus syndrome. The adverse events associated with treatment led to discontinuation in over half of treated patients. (Funded by Genentech and others; ClinicalTrials.gov number, NCT00957229.).


Molecular Cell | 2000

Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis.

Jean Y. Tang; Byung Joon Hwang; James M. Ford; Philip C. Hanawalt; Gilbert Chu

UV-damaged DNA-binding activity (UV-DDB) is deficient in some xeroderma pigmentosum group E individuals due to mutation of the p48 gene, but its role in DNA repair has been obscure. We found that UV-DDB is also deficient in cell lines and primary tissues from rodents. Transfection of p48 conferred UV-DDB to hamster cells, and enhanced removal of cyclobutane pyrimidine dimers (CPDs) from genomic DNA and from the nontranscribed strand of an expressed gene. Expression of p48 suppressed UV-induced mutations arising from the nontranscribed strand, but had no effect on cellular UV sensitivity. These results define the role of p48 in DNA repair, demonstrate the importance of CPDs in mutagenesis, and suggest how rodent models can be improved to better reflect cancer susceptibility in humans.


Cancer Cell | 2010

Itraconazole, a Commonly Used Antifungal that Inhibits Hedgehog Pathway Activity and Cancer Growth

James Kim; Jean Y. Tang; Ruoyu Gong; Jynho Kim; John J. Lee; Karl V. Clemons; Curtis R. Chong; Kris S. Chang; Mark Fereshteh; Dale R. Gardner; Tannishtha Reya; Jun O. Liu; Ervin H. Epstein; David A. Stevens; Philip A. Beachy

In a screen of drugs previously tested in humans we identified itraconazole, a systemic antifungal, as a potent antagonist of the Hedgehog (Hh) signaling pathway that acts by a mechanism distinct from its inhibitory effect on fungal sterol biosynthesis. Systemically administered itraconazole, like other Hh pathway antagonists, can suppress Hh pathway activity and the growth of medulloblastoma in a mouse allograft model and does so at serum levels comparable to those in patients undergoing antifungal therapy. Mechanistically, itraconazole appears to act on the essential Hh pathway component Smoothened (SMO) by a mechanism distinct from that of cyclopamine and other known SMO antagonists, and prevents the ciliary accumulation of SMO normally caused by Hh stimulation.


Cancer Cell | 2013

Itraconazole and Arsenic Trioxide Inhibit Hedgehog Pathway Activation and Tumor Growth Associated with Acquired Resistance to Smoothened Antagonists

James Kim; Blake T. Aftab; Jean Y. Tang; Daniel Kim; Alex H. F. Lee; Melika Rezaee; Jynho Kim; Baozhi Chen; Emily M. King; Alexandra Borodovsky; Gregory J. Riggins; Ervin H. Epstein; Philip A. Beachy; Charles M. Rudin

Recognition of the multiple roles of Hedgehog signaling in cancer has prompted intensive efforts to develop targeted pathway inhibitors. Leading inhibitors in clinical development act by binding to a common site within Smoothened, a critical pathway component. Acquired Smoothened mutations, including SMO(D477G), confer resistance to these inhibitors. Here, we report that itraconazole and arsenic trioxide, two agents in clinical use that inhibit Hedgehog signaling by mechanisms distinct from that of current Smoothened antagonists, retain inhibitory activity in vitro in the context of all reported resistance-conferring Smoothened mutants and GLI2 overexpression. Itraconazole and arsenic trioxide, alone or in combination, inhibit the growth of medulloblastoma and basal cell carcinoma in vivo, and prolong survival of mice with intracranial drug-resistant SMO(D477G) medulloblastoma.


Nature Medicine | 2014

Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

Yujie Tang; Sharareh Gholamin; Simone Schubert; Minde Willardson; Alex G. Lee; Pratiti Bandopadhayay; Guillame Bergthold; Sabran Masoud; Brian Nguyen; Nujsaubnusi Vue; Brianna Balansay; Furong Yu; Sekyung Oh; Pamelyn Woo; Spenser Chen; Anitha Ponnuswami; Michelle Monje; Scott X. Atwood; Ramon J. Whitson; Siddhartha Mitra; Samuel H. Cheshier; Jun Qi; Rameen Beroukhim; Jean Y. Tang; Rob Wechsler-Reya; Anthony E. Oro; Brian A. Link; James E. Bradner; Yoon-Jae Cho

Hedgehog signaling drives oncogenesis in several cancers, and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened (SMO). However, resistance to Smoothened inhibitors occurs by genetic changes of Smoothened or other downstream Hedgehog components. Here we overcome these resistance mechanisms by modulating GLI transcription through inhibition of bromo and extra C-terminal (BET) bromodomain proteins. We show that BRD4 and other BET bromodomain proteins regulate GLI transcription downstream of SMO and suppressor of fused (SUFU), and chromatin immunoprecipitation studies reveal that BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites after treatment with JQ1, a small-molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM (genetically engineered mouse model)-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. Altogether, our results reveal BET proteins as critical regulators of Hedgehog pathway transcriptional output and nominate BET bromodomain inhibitors as a strategy for treating Hedgehog-driven tumors with emerged or a priori resistance to Smoothened antagonists.


Nature | 2013

GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas.

Scott X. Atwood; Mischa Li; Alex G. Lee; Jean Y. Tang; Anthony E. Oro

Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C ι/λ (aPKC-ι/λ) as a novel GLI regulator in mammals. aPKC-ι/λ and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-ι/λ function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-ι/λ and SMO control the expression of similar genes in tumour cells. aPKC-ι/λ functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-ι/λ is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-ι/λ suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-ι/λ is critical for HH-dependent processes and implicates aPKC-ι/λ as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C ι/λ (aPKC-ι/λ) as a novel GLI regulator in mammals. aPKC-ι/λ and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-ι/λ function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-ι/λ and SMO control the expression of similar genes in tumour cells. aPKC-ι/λ functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-ι/λ is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-ι/λ suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-ι/λ is critical for HH-dependent processes and implicates aPKC-ι/λ as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.


Journal of Clinical Oncology | 2014

Open-Label, Exploratory Phase II Trial of Oral Itraconazole for the Treatment of Basal Cell Carcinoma

Daniel Kim; James Kim; Katrina Spaunhurst; Javier Montoya; Rita Khodosh; Kalyani Chandra; Teresa Fu; Anita C. Gilliam; Monserrat Molgó; Philip A. Beachy; Jean Y. Tang

PURPOSE Itraconazole, a US Food and Drug Administration-approved antifungal drug, inhibits the Hedgehog (HH) signaling pathway, a crucial driver of basal cell carcinoma (BCC) tumorigenesis, and reduces BCC growth in mice. We assessed the effect of itraconazole on the HH pathway and on tumor size in human BCC tumors. PATIENTS AND METHODS Patients with ≥ one BCC tumor > 4 mm in diameter were enrolled onto two cohorts to receive oral itraconazole 200 mg twice per day for 1 month (cohort A) or 100 mg twice per day for an average of 2.3 months (cohort B). The primary end point was change in biomarkers: Ki67 tumor proliferation and HH activity (GLI1 mRNA). Secondary end points included change in tumor size in a subset of patients with multiple tumors. RESULTS A total of 29 patients were enrolled, of whom 19 were treated with itraconazole. Itraconazole treatment was associated with two adverse events (grade 2 fatigue and grade 4 congestive heart failure). Itraconazole reduced cell proliferation by 45% (P = .04), HH pathway activity by 65% (P = .03), and reduced tumor area by 24% (95% CI, 18.2% to 30.0%). Of eight patients with multiple nonbiopsied tumors, four achieved partial response, and four had stable disease. Tumors from untreated control patients and from those previously treated with vismodegib showed no significant changes in proliferation or tumor size. CONCLUSION Itraconazole has anti-BCC activity in humans. These results provide the basis for larger trials of longer duration to measure the clinical efficacy of itraconazole, especially relative to other HH pathway inhibitors.


Cancer Cell | 2015

Genomic Analysis of Smoothened Inhibitor Resistance in Basal Cell Carcinoma

Hayley Sharpe; Gregoire Pau; Gerrit J. P. Dijkgraaf; Nicole Basset-Seguin; Zora Modrusan; Thomas Januario; Vickie Tsui; Alison B. Durham; Andrzej A. Dlugosz; Peter M. Haverty; Richard Bourgon; Jean Y. Tang; Kavita Y. Sarin; Luc Dirix; David C. Fisher; Charles M. Rudin; Howard Sofen; Michael R. Migden; Robert L. Yauch; Frederic J. de Sauvage

Smoothened (SMO) inhibitors are under clinical investigation for the treatment of several cancers. Vismodegib is approved for the treatment of locally advanced and metastatic basal cell carcinoma (BCC). Most BCC patients experience significant clinical benefit on vismodegib, but some develop resistance. Genomic analysis of tumor biopsies revealed that vismodegib resistance is associated with Hedgehog (Hh) pathway reactivation, predominantly through mutation of the drug target SMO and to a lesser extent through concurrent copy number changes in SUFU and GLI2. SMO mutations either directly impaired drug binding or activated SMO to varying levels. Furthermore, we found evidence for intra-tumor heterogeneity, suggesting that a combination of therapies targeting components at multiple levels of the Hh pathway is required to overcome resistance.


Cancer Prevention Research | 2011

Vitamin D3 Inhibits Hedgehog Signaling and Proliferation in Murine Basal Cell Carcinomas

Jean Y. Tang; Tony Zheng Xiao; Yuko Oda; Kris S. Chang; Elana Shpall; Angela Wu; Po-Lin So; Jennifer Hebert; Daniel D. Bikle; Ervin H. Epstein

Constitutive Hedgehog (HH) signaling underlies several human tumors, including basal cell carcinoma (BCC). Recently, Bijlsma and colleagues reported a new biologic function for vitamin D3 in suppressing HH signaling in an in vitro model system. On the basis of that work, we have assessed effects of vitamin D3 on HH signaling and proliferation of murine BCCs in vitro and in vivo. We find that indeed in BCC cells, vitamin D3 blocks both proliferation and HH signaling as assessed by mRNA expression of the HH target gene Gli1. These effects of vitamin D3 on Gli1 expression and on BCC cell proliferation are comparable to the effects of cyclopamine, a known inhibitor of the HH pathway. These results are specific for vitamin D3, because the precursor 7-dehydrocholesterol and the downstream products 25-hydroxy vitamin D3 [25(OH)D] and 1,25-dihydroxy vitamin D3 [1,25(OH)2D] are considerably less effective in reducing either Gli1 mRNA or cellular proliferation. Moreover, these effects seem to be independent of the vitamin D receptor (VDR) because short hairpin RNA knockdown of VDR does not abrogate the anti-HH effects of D3 despite reducing expression of the VDR target gene 24-hydroxylase. Finally, topical vitamin D3 treatment of existing murine BCC tumors significantly decreases Gli1 and Ki67 staining. Thus, topical vitamin D3 acting via its HH inhibiting effect may hold promise as an effective anti-BCC agent. Cancer Prev Res; 4(5); 744–51. ©2011 AACR.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1995

Inhibition of Lecithin-Cholesterol Acyltransferase and Modification of HDL Apolipoproteins by Aldehydes

Mark R. McCall; Jean Y. Tang; John K. Bielicki; Trudy M. Forte

Experimental evidence suggests that aldehydes generated as a consequence of lipid peroxidation may be involved in the pathogenesis of atherosclerosis. It is well documented that aldehydes modify LDL: however, less is known concerning the effects of aldehydes on other plasma and interstitial fluid components. In the present study, we investigated the effects of five physiologically relevant aldehydes (acetaldehyde, acrolein, hexanal, 4-hydroxynonenal [HNE], and malondialdehyde [MDA]) on two key constituents of the antiatherogenic reverse cholesterol transport pathway, lecithin-cholesterol acyltransferase (LCAT) and HDL. Human plasma was incubated for 3 hours at 37 degrees C with each one of the five aldehydes at concentrations ranging from 0.16 to 84 mmol/L. Dose-dependent decreases in LCAT activity were observed. The short-chain (acrolein) and long-chain (HNE) alpha,beta-unsaturated aldehydes were the most effective LCAT inhibitors. Micromolar concentrations of these unsaturated aldehydes resulted in significant reductions in plasma LCAT activity. The short- and longer-chain saturated aldehydes acetaldehyde and hexanal and the dialdehyde MDA were considerably less effective at inhibiting LCAT than were acrolein and HNE. In addition to inhibiting LCAT, aldehydes increased HDL electrophoretic mobility and cross-linked HDL apolipoproteins. Cross-linking of apolipoproteins A-I and A-II required higher aldehyde concentrations than inhibition of LCAT. The alpha,beta-unsaturated aldehydes acrolein and HNE were fourfold to eightfold more effective cross-linkers of apolipoproteins A-I and A-II than the other aldehydes studied. These data suggest that products of lipid peroxidation, especially unsaturated aldehydes, may interfere with normal HDL cholesterol transport by inhibiting LCAT and modifying HDL apolipoproteins.

Collaboration


Dive into the Jean Y. Tang's collaboration.

Top Co-Authors

Avatar

Ervin H. Epstein

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

JoAnn E. Manson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge