Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine J. Ransohoff is active.

Publication


Featured researches published by Katherine J. Ransohoff.


Circulation | 2008

Comparison of Different Adult Stem Cell Types for Treatment of Myocardial Ischemia

Koen E.A. van der Bogt; Ahmad Y. Sheikh; Sonja Schrepfer; Grant Hoyt; Feng Cao; Katherine J. Ransohoff; Rutger-Jan Swijnenburg; Jeremy Pearl; Andrew Lee; Michael P. Fischbein; Christopher H. Contag; Robert C. Robbins; Joseph C. Wu

Background— A comparative analysis of the efficacy of different cell candidates for the treatment of heart disease remains to be described. This study is designed to evaluate the therapeutic efficacy of 4 cell types in a murine model of myocardial infarction. Methods and Results— Bone marrow mononuclear cells (MN), mesenchymal stem cells (MSC), skeletal myoblasts (SkMb), and fibroblasts (Fibro) expressing firefly luciferase (Fluc) and green fluorescence protein (GFP) were characterized by flow cytometry, bioluminescence imaging (BLI), and luminometry. Female FVB mice (n=70) underwent LAD ligation and intramyocardially received one cell type (5×105) or PBS. Cell survival was measured by BLI and by TaqMan PCR. Cardiac function was assessed by echocardiography and invasive hemodynamic measurements. Fluc expression correlated with cell number in all groups (r2>0.93). In vivo BLI revealed acute donor cell death of MSC, SkMb, and Fibro within 3 weeks after transplantation. By contrast, cardiac signals were still present after 6 weeks in the MN group, as confirmed by TaqMan PCR (P<0.01). Echocardiography showed significant preservation of fractional shortening in the MN group compared to controls (P<0.05). Measurements of left ventricular end-systolic/diastolic volumes revealed that the least amount of ventricular dilatation occurred in the MN group (P<0.05). Histology confirmed the presence of MN, although there was no evidence of transdifferentiation by donor MN into cardiomyocytes. Conclusions— This is the first study to show that compared to MSC, SkMB, and Fibro, MN exhibit a more favorable survival pattern, which translates into a more robust preservation of cardiac function.


Stem Cells | 2013

MicroRNA‐302 Increases Reprogramming Efficiency via Repression of NR2F2

Shijun Hu; Kitchener D. Wilson; Zhumur Ghosh; Leng Han; Yongming Wang; Feng Lan; Katherine J. Ransohoff; Paul W. Burridge; Joseph C. Wu

MicroRNAs (miRNAs) have emerged as critical regulators of gene expression through translational inhibition and RNA decay and have been implicated in the regulation of cellular differentiation, proliferation, angiogenesis, and apoptosis. In this study, we analyzed global miRNA and mRNA microarrays to predict novel miRNA‐mRNA interactions in human embryonic stem cells and induced pluripotent stem cells (iPSCs). In particular, we demonstrate a regulatory feedback loop between the miR‐302 cluster and two transcription factors, NR2F2 and OCT4. Our data show high expression of miR‐302 and OCT4 in pluripotent cells, while NR2F2 is expressed exclusively in differentiated cells. Target analysis predicts that NR2F2 is a direct target of miR‐302, which we experimentally confirm by reporter luciferase assays and real‐time polymerase chain reaction. We also demonstrate that NR2F2 directly inhibits the activity of the OCT4 promoter and thus diminishes the positive feedback loop between OCT4 and miR‐302. Importantly, higher reprogramming efficiencies were obtained when we reprogrammed human adipose‐derived stem cells into iPSCs using four factors (KLF4, C‐MYC, OCT4, and SOX2) plus miR‐302 (this reprogramming cocktail is hereafter referred to as “KMOS3”) when compared to using four factors (“KMOS”). Furthermore, shRNA knockdown of NR2F2 mimics the over‐expression of miR‐302 by also enhancing reprogramming efficiency. Interestingly, we were unable to generate iPSCs from miR‐302a/b/c/d alone, which is in contrast to previous publications that have reported that miR‐302 by itself can reprogram human skin cancer cells and human hair follicle cells. Taken together, these findings demonstrate that miR‐302 inhibits NR2F2 and promotes pluripotency through indirect positive regulation of OCT4. This feedback loop represents an important new mechanism for understanding and inducing pluripotency in somatic cells. STEM CELLS2013;31:259–268


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

In Vivo Functional and Transcriptional Profiling of Bone Marrow Stem Cells After Transplantation Into Ischemic Myocardium

Ahmad Y. Sheikh; Bruno C. Huber; Kazim H. Narsinh; Joshua M. Spin; Koen E.A. van der Bogt; Patricia E. de Almeida; Katherine J. Ransohoff; Daniel Kraft; Giovanni Fajardo; Diego Ardigò; Julia D. Ransohoff; Daniel Bernstein; Michael P. Fischbein; Robert C. Robbins; Joseph C. Wu

Objective— Clinical trials of bone marrow–derived stem cell therapy for the heart have yielded variable results. The basic mechanism(s) that underlies their potential efficacy remains unknown. In the present study, we evaluated the survival kinetics, transcriptional response, and functional outcome of intramyocardial bone marrow mononuclear cell (BMMC) transplantation for cardiac repair in a murine myocardial infarction model. Methods and Results— We used bioluminescence imaging and high-throughput transcriptional profiling to evaluate the in vivo survival kinetics and gene expression changes of transplanted BMMCs after their engraftment into ischemic myocardium. Our results demonstrate short-lived survival of cells following transplant, with less than 1% of cells surviving by 6 weeks posttransplantation. Moreover, transcriptomic analysis of BMMCs revealed nonspecific upregulation of various cell regulatory genes, with a marked downregulation of cell differentiation and maturation pathways. BMMC therapy caused limited improvement of heart function as assessed by echocardiography, invasive hemodynamics, and positron emission tomography. Histological evaluation of cell fate further confirmed findings of the in vivo cell tracking and transcriptomic analysis. Conclusion— Collectively, these data suggest that BMMC therapy, in its present iteration, may be less efficacious than once thought. Additional refinement of existing cell delivery protocols should be considered to induce better therapeutic efficacy.


Stem Cells | 2013

Costimulation-adhesion blockade is superior to cyclosporine A and prednisone immunosuppressive therapy for preventing rejection of differentiated human embryonic stem cells following transplantation.

Bruno C. Huber; Julia D. Ransohoff; Katherine J. Ransohoff; Johannes Riegler; Antje D. Ebert; Kazuki Kodo; Yongquan Gong; Veronica Sanchez-Freire; Devaveena Dey; Nigel G. Kooreman; Sebastian Diecke; Wendy Y. Zhang; Justin I. Odegaard; Shijun Hu; Joseph D. Gold; Robert C. Robbins; Joseph C. Wu

Rationale: Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction. Objective: To test the hypothesis that a short‐course, dual‐agent regimen of two costimulation‐adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents. Methods and Results: We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein, and differentiated these cells to endothelial cells (hESC‐ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging. Costimulation‐adhesion therapy resulted in superior hESC‐EC and mouse EC engraftment compared to cyclosporine therapy in a hind limb model. Costimulation‐adhesion therapy also promoted robust hESC‐EC and hESC‐derived cardiomyocyte survival in an ischemic myocardial injury model. Improved hESC‐EC engraftment had a cardioprotective effect after myocardial injury, as assessed by magnetic resonance imaging. Mechanistically, costimulation‐adhesion therapy is associated with systemic and intragraft upregulation of T‐cell immunoglobulin and mucin domain 3 (TIM3) and a reduced proinflammatory cytokine profile. Conclusions: Costimulation‐adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post‐transplant rejection of hESC derivatives. By extending the window for cellular engraftment, costimulation‐adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3‐dependent mechanism. Stem Cells 2013;31:2354–2363


JAMA Dermatology | 2016

Effects of Combined Treatment With Arsenic Trioxide and Itraconazole in Patients With Refractory Metastatic Basal Cell Carcinoma

Mina S. Ally; Katherine J. Ransohoff; Kavita Y. Sarin; Scott X. Atwood; Melika Rezaee; I. Bailey-Healy; Jynho Kim; Philip A. Beachy; Anne Lynn S. Chang; Anthony E. Oro; Jean Y. Tang; A. Dimitrios Colevas

IMPORTANCE Tumor resistance is an emerging problem for Smoothened (SMO) inhibitor-treated metastatic basal cell carcinoma (BCC). Arsenic trioxide and itraconazole antagonize the hedgehog (HH) pathway at sites distinct from those treated by SMO inhibitors. OBJECTIVE To determine whether administration of intravenous arsenic trioxide and oral itraconazole in patients with metastatic BCC is associated with a reduction in GLI1 messenger RNA expression in tumor and/or normal skin biopsy samples. DESIGN, SETTING, AND PARTICIPANTS Five men with metastatic BCC who experienced relapse after SMO inhibitor treatment underwent intravenous arsenic trioxide treatment for 5 days, every 28 days, and oral itraconazole treatment on days 6 to 28. Data were collected from April 10 to November 14, 2013. Follow-up was completed on October 3, 2015, and data were analyzed from June 5 to October 6, 2015. MAIN OUTCOMES AND MEASURES The primary outcome was the change in messenger RNA levels of the GLI family zinc finger 1 (GLI1) gene (HH-pathway target gene) in biopsy specimens of normal skin or BCC before and after treatment. Secondary objectives were evaluation of tumor response and tolerability. RESULTS Of the 5 patients (mean [SD] age, 52 [9] years; age range, 43-62 years), 3 completed 3 cycles of treatment and 2 discontinued treatment early owing to disease progression or adverse events. Adverse effects included grade 2 transaminitis and grade 4 leukopenia with a grade 3 infection. Overall, arsenic trioxide and itraconazole reduced GLI1 messenger RNA levels by 75% from baseline (P < .001). The best overall response after 3 treatment cycles was stable disease in 3 patients. CONCLUSIONS AND RELEVANCE Targeting the HH pathway with sequential arsenic trioxide and itraconazole treatment is a feasible treatment for metastatic BCC. Although some patients experienced stable disease for 3 months, none had tumor shrinkage, which may be owing to transient GLI1 suppression with sequential dosing. Continuous dosing may be required to fully inhibit the HH pathway and achieve clinical response.


The New England Journal of Medicine | 2015

Squamous Change in Basal-Cell Carcinoma with Drug Resistance

Katherine J. Ransohoff; Jean Y. Tang; Kavita Y. Sarin

In a 62-year-old woman with advanced basal-cell carcinoma who was treated with vismodegib, a recurrent mass was identified as a squamous-cell carcinoma that shared genetic features with the primary basal-cell tumor.


Thrombosis and Haemostasis | 2010

Advances in cardiovascular molecular imaging for tracking stem cell therapy

Katherine J. Ransohoff; Joseph C. Wu

The high mortality rate associated with cardiovascular disease is partially due to the lack of proliferative cells in the heart. Without adequate repair following myocardial infarction, progressive dilation can lead to heart failure. Stem cell therapies present one promising option for treating cardiovascular disease, though the specific mechanisms by which they benefit the heart remain unclear. Before stem cell therapies can be used safely in human populations, their biology must be investigated using innovative technologies such as multi-modality molecular imaging. The present review will discuss the basic principles, labelling techniques, clinical applications, and drawbacks associated with four major modalities: radionuclide imaging, magnetic resonance imaging, bioluminescence imaging, and fluorescence imaging.


Journal of The American Academy of Dermatology | 2016

Familial skin cancer syndromes: Increased melanoma risk

Katherine J. Ransohoff; Prajaka D. Jaju; Jean Y. Tang; Michele Carbone; Sancy A. Leachman; Kavita Y. Sarin

Phenotypic traits, such as red hair and freckling, increase melanoma risk by 2- to 3-fold. In addition, approximately 10% of melanomas are caused by inherited germline mutations that increase melanoma risk from 4- to >1000-fold. This review highlights the key genes responsible for inherited melanoma, with an emphasis on when a patient should undergo genetic testing. Many genetic syndromes associated with increased melanoma risk are also associated with an increased risk of other cancers. Identification of these high-risk patients is essential for preventive behavior reinforcement, genetic counseling, and ensuring other required cancer screenings.


Journal of The American Academy of Dermatology | 2016

Familial skin cancer syndromes: Increased risk of nonmelanotic skin cancers and extracutaneous tumors

Prajakta D. Jaju; Katherine J. Ransohoff; Jean Y. Tang; Kavita Y. Sarin

Nonmelanoma skin cancers (NMSCs) represent the most common malignancies worldwide, with reported incidence rising each year. Both cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as other NMSCs, represent complex diseases with a combination of environmental and genetic risk factors. In general, hereditary cancer syndromes that increase the risk of NMSC fall under several broad categories: those associated with immunodeficiencies, those that affect skin pigmentation, and those that perturb key molecular pathways involved in the pathogenesis of NMSCs. Many of the syndromes are also associated with extracutaneous manifestations, including internal malignancies; therefore, most require a multidisciplinary management approach with a medical geneticist. Finally, dermatologists play a critical role in the diagnosis and management of these conditions, because cutaneous findings are often the presenting manifestations of disease.


Social Cognitive and Affective Neuroscience | 2016

Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

Regan M. Bernhard; Richie Siburian; Patience Gallagher; Katherine J. Ransohoff; Daniel Wikler; Roy H. Perlis; Joshua D. Greene

Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes.

Collaboration


Dive into the Katherine J. Ransohoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge