Jeanette E Boudreau
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeanette E Boudreau.
The Journal of Allergy and Clinical Immunology | 2013
Derek K. Chu; Alba Llop-Guevara; Tina D. Walker; Kristin Flader; Susanna Goncharova; Jeanette E Boudreau; Cheryl Lynn Moore; Tracy Seunghyun In; Susan Waserman; Anthony J. Coyle; Roland Kolbeck; Alison A. Humbles; Manel Jordana
BACKGROUND Allergen exposure at lung and gut mucosae can lead to aberrant T(H)2 immunity and allergic disease. The epithelium-associated cytokines thymic stromal lymphopoietin (TSLP), IL-25, and IL-33 are suggested to be important for the initiation of these responses. OBJECTIVE We sought to investigate the contributions of TSLP, IL-25, and IL-33 in the development of allergic disease to the common allergens house dust mite (HDM) or peanut. METHODS Neutralizing antibodies or mice deficient in TSLP, IL-25, or IL-33 signaling were exposed to HDM intranasally or peanut intragastrically, and immune inflammatory and physiologic responses were evaluated. In vitro assays were performed to examine specific dendritic cell (DC) functions. RESULTS We showed that experimental HDM-induced allergic asthma and food allergy and anaphylaxis to peanut were associated with TSLP production but developed independently of TSLP, likely because these allergens functionally mimicked TSLP inhibition of IL-12 production and induction of OX40 ligand (OX40L) on DCs. Blockade of OX40L significantly lessened allergic responses to HDM or peanut. Although IL-25 and IL-33 induced OX40L on DCs in vitro, only IL-33 signaling was necessary for intact allergic immunity, likely because of its superior ability to induce DC OX40L and expand innate lymphoid cells in vivo. CONCLUSION These data identify a nonredundant, IL-33-driven mechanism initiating T(H)2 responses to the clinically relevant allergens HDM and peanut. Our findings, along with those in infectious and transgenic/surrogate allergen systems, favor a paradigm whereby multiple molecular pathways can initiate T(H)2 immunity, which has implications for the conceptualization and manipulation of these responses in health and disease.
Molecular Therapy | 2010
Byram W. Bridle; Kyle B. Stephenson; Jeanette E Boudreau; Sandeep Koshy; Natasha Kazdhan; Eleanor Pullenayegum; Jérôme Brunellière; Jonathan Bramson; Brian D. Lichty; Yonghong Wan
Oncolytic viruses (OVs) are highly immunogenic and this limits their use in immune-competent hosts. Although immunosuppression may improve viral oncolysis, this gain is likely achieved at the cost of antitumoral immunity. We have developed a strategy wherein the immune response against the OV leads to enhanced therapeutic outcomes. We demonstrate that immunization with an adenoviral (Ad) vaccine before treatment with an oncolytic vesicular stomatitis virus (VSV) expressing the same tumor antigen (Ag) leads to significantly enhanced antitumoral immunity. Intratumoral replication of VSV was minimally attenuated in Ad-immunized hosts but extending the interval between treatments reduced the attenuating effect and further increased antitumoral immunity. More importantly, our combination approach shifted the immune response from viral Ags to tumor Ags and further reduced OV replication in normal tissues, leading to enhancements in both efficacy and safety. These studies also highlight the benefits of using a replicating, OV to boost a pre-existing antitumoral immune response as this approach generated larger responses versus tumor Ag in tumor-bearing hosts than could be achieved in tumor-free hosts. This strategy should be applicable to other vector combinations, tumor Ags, and tumor targets.
Molecular Therapy | 2011
Jeanette E Boudreau; Aude Bonehill; Kris Thielemans; Yonghong Wan
Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed.
Molecular Therapy | 2011
Paul T. Sobol; Jeanette E Boudreau; Kyle B. Stephenson; Yonghong Wan; Brian D. Lichty; Karen L. Mossman
Oncolytic virotherapy, the selective killing of tumor cells by oncolytic viruses (OVs), has emerged as a promising avenue of anticancer research. We have previously shown that KM100, a Herpes simplex virus type-1 (HSV) deficient for infected cell protein 0 (ICP0), possesses substantial oncolytic properties in vitro and has antitumor efficacy in vivo, in part by inducing antitumor immunity. Here, we illustrate through T-cell immunodepletion studies in nontolerized tumor-associated antigen models of breast cancer that KM100 treatment promotes antiviral and antitumor CD8(+) cytotoxic T-cell responses necessary for complete tumor regression. In tolerized tumor-associated antigen models of breast cancer, antiviral CD8(+) cytotoxic T-cell responses against infected tumor cells correlated with the induction of significant tumoristasis in the absence of tumor-associated antigen-specific CD8(+) cytotoxic T-cells. To enhance oncolysis, we tested a more cytopathic ICP0-null HSV and a vesicular stomatitis virus M protein mutant and found that despite improved in vitro replication, oncolysis in vivo did not improve. These studies illustrate that the in vitro cytolytic properties of OVs are poor prognostic indicators of in vivo antitumor activity, and underscore the importance of adaptive antiviral CD8(+) cytotoxic T-cells in effective cancer virotherapy.
Molecular Therapy | 2009
Byram W. Bridle; Jeanette E Boudreau; Brian D. Lichty; Jérôme Brunellière; Kyle B. Stephenson; Sandeep Koshy; Jonathan Bramson; Yonghong Wan
Vesicular stomatitis virus (VSV) has proven to be an effective vaccine vector for immunization against viral infection, but its potential to induce an immune response to a self-tumor antigen has not been investigated. We constructed a recombinant VSV expressing human dopachrome tautomerase (hDCT) and evaluated its immunogenicity in a murine melanoma model. Intranasal delivery of VSV-hDCT activated both CD4(+) and CD8(+) DCT-specific T-cell responses. The magnitude of these responses could be significantly increased by booster immunization with recombinant adenovirus (Ad)-hDCT, which led to enhanced efficacy against B16-F10 melanoma in both prophylactic and therapeutic settings. Notably, the interval of VSV/Ad heterologous vaccination could be shortened to as few as 4 days, making it a potential regimen to rapidly expand antigen-specific effector cells. Furthermore, VSV-hDCT could increase DCT-specific T-cell responses primed by Ad-hDCT, suggesting VSV is efficient for both priming and boosting of the immune response against a self-tumor antigen.
Molecular Therapy | 2009
Jeanette E Boudreau; Byram W. Bridle; Kyle B. Stephenson; Kristina M. Jenkins; Jérôme Brunellière; Jonathan Bramson; Brian D. Lichty; Yonghong Wan
Dendritic cell (DC)-based vaccines are a promising strategy for tumor immunotherapy due to their ability to activate both antigen-specific T-cell immunity and innate immune effector components, including natural killer (NK) cells. However, the optimal mode of antigen delivery and DC activation remains to be determined. Using M protein mutant vesicular stomatitis virus (DeltaM51-VSV) as a gene-delivery vector, we demonstrate that a high level of transgene expression could be achieved in approximately 70% of DCs without affecting cell viability. Furthermore, DeltaM51-VSV infection activated DCs to produce proinflammatory cytokines (interleukin-12, tumor necrosis factor-alpha, and interferon (IFN)alpha/beta), and to display a mature phenotype (CD40(high)CD86(high) major histocompatibility complex (MHC II)(high)). When delivered to mice bearing 10-day-old lung metastatic tumors, DCs infected with DeltaM51-VSV encoding a tumor-associated antigen mediated significant control of tumor growth by engaging both NK and CD8(+) T cells. Importantly, depletion of NK cells completely abrogated tumor destruction, indicating that NK cells play a critical role for this DC vaccine-induced therapeutic outcome. Our findings identify DeltaM51-VSV as both an efficient gene-delivery vector and a maturation agent allowing DC vaccines to overcome immunosuppression in the tumor-bearing host.
Molecular Therapy | 2008
Khalil Karimi; Jeanette E Boudreau; Katie Fraser; Hongju Liu; Jordan Delanghe; Jack Gauldie; Zhou Xing; Jonathan Bramson; Yonghong Wan
Activation of cytotoxic T lymphocytes (CTLs) is a primary goal of many cancer vaccination therapies. We have evaluated two vaccination platforms, dendritic cells (DCs) and recombinant adenoviruses (rAds), for their ability to elicit CTL response and antitumor protection. Although rAd was more potent in CTL priming, DC vaccination provided greater protective and therapeutic antitumor activity. Subsequent analyses ruled out the possibility that the two vaccines elicit qualitatively distinct CTL, and demonstrated instead that DCs could better engage natural killer (NK) cells as an additional effector mechanism. We demonstrated that, although both DCs and rAd can stimulate rapid NK expansion, only DC-activated NK cells are able to produce interferon-γ (IFNγ) and mediate antitumor protection. Moreover, our data showed that exogenously delivered DCs preferentially engaged the Mac-1highCD27high NK subset, thereby suggesting that this NK population plays a predominant role in NK:DC interaction. Interestingly, at least 3 days were required for DC-triggered NK cells to acquire effector functions, indicating that a similar priming process operates between T cells and NK cells. Our results suggest that the nature of the vaccine platform can determine the relative involvement of NK and T cells in antitumor immunity, and that methods to augment NK function should be included in vaccination strategies in order to complement CTL-mediated control of tumor growth.
Cancer Research | 2011
Jeanette E Boudreau; Kyle B. Stephenson; Fuan Wang; Ali A. Ashkar; Karen L. Mossman; Laurel L. Lenz; Kenneth L. Rosenthal; Jonathan Bramson; Brian D. Lichty; Yonghong Wan
There is increasing evidence that natural killer (NK) cells play an important role in antitumor immunity following dendritic cell (DC) vaccination. Little is known, however, about the optimal stimulation of DCs that favors NK activation in tumor-bearing hosts. In this study, we demonstrate that treatment with toll-like receptor (TLR) ligands and infection with a mutant vesicular stomatitis virus (VSV-ΔM51) both induced DC maturation. Further, inoculation of these DCs led to robust NK-mediated protection against tumor challenge. Strikingly, only VSV-ΔM51-infected DCs were capable of suppressing the growth of established tumors, suggesting that additional signals provided by viral infection may be required to activate tumoricidal NK cells in tumor-bearing hosts. VSV-ΔM51 infection of DCs induced greater type I interferon (IFN I) production than TLR ligand treatment, and disruption of the IFN I pathway in DCs eliminated their ability to induce NK activation and tumor protection. However, further studies indicated that IFN I alone was not sufficient to activate NK cells, especially in the presence of a tumor, and DC-derived IL-15 was additionally required for tumoricidal NK activation. These results suggest that induction of IFN I by VSV-ΔM51 allows DCs to overcome tumor-associated immunosuppression and facilitate IL-15-mediated priming of tumoricidal NK cells. Thus, the mode of DC maturation should be carefully considered when designing DC-based cancer immunotherapies.
Blood | 2011
Jennifer Bassett; Teng Chih Yang; Dannie Bernard; James Millar; Stephanie L. Swift; A.J. Robert McGray; Heather VanSeggelen; Jeanette E Boudreau; Jonathan D. Finn; Robin Parsons; Carole Evelegh; Daniela Damjanovic; Natalie Grinshtein; Maziar Divangahi; Liang Zhang; Zhou Xing; Yonghong Wan; Jonathan Bramson
We have recently reported that CD8(+) T-cell memory maintenance after immunization with recombinant human adenovirus type 5 (rHuAd5) is dependent upon persistent transgene expression beyond the peak of the response. In this report, we have further investigated the location and nature of the cell populations responsible for this sustained response. The draining lymph nodes were found to be important for primary expansion but not for memory maintenance, suggesting that antigen presentation through a nonlymphoid source was required. Using bone marrow chimeric mice, we determined that antigen presentation by nonhematopoietic antigen-presenting cells (APCs) was sufficient for maintenance of CD8(+) T-cell numbers. However, antigen presentation by this mechanism alone yielded a memory population that displayed alterations in phenotype, cytokine production and protective capacity, indicating that antigen presentation through both hematopoietic and nonhematopoietic APCs ultimately defines the memory CD8(+) T-cell response produced by rHuAd5. These results shed new light on the immunobiology of rHuAd5 vectors and provide evidence for a mechanism of CD8(+) T-cell expansion and memory maintenance that relies upon both hematopoietic and nonhematopoietic APCs.
Journal of Clinical Oncology | 2016
Christopher J. Forlenza; Jeanette E Boudreau; Junting Zheng; Jean-Benoît Le Luduec; Elizabeth Chamberlain; Glenn Heller; Nai-Kong V. Cheung; Katharine C. Hsu
PURPOSE In patients with neuroblastoma (NB), treatment with anti-GD2 monoclonal antibody (mAb) directs natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) against tumor cells. However, tumor cytotoxicity is attenuated by ligation of inhibitory killer immunoglobulin-like receptors (KIRs) by HLA class I molecules. KIR3DL1 polymorphism influences its ability to engage HLA-Bw4 ligands. We tested the hypothesis that poorly interacting combinations of KIR3DL1 and HLA ligands are more permissive of mAb-mediated antitumor effect. METHODS KIR3DL1 and HLA-B subtyping were performed with a multiplex intermediate-resolution polymerase chain reaction assay for a cohort of 245 patients who were treated with antibody 3F8 for high-risk NB. Patient outcomes were analyzed according to expected degree of interaction between KIR3DL1 and HLA-B subtypes and grouped as strong, weak, or noninteractors. A comparison of NK response to 3F8 mAb opsonized NB cells between strong- and noninteracting donors was performed by flow cytometry. RESULTS KIR3DL1 and HLA-B subtype combinations associated with noninteraction as a result of lack of receptor expression [KIR3DL1(-)], failure of interaction with inhibitory ligands [KIR3DS1(+)], or absence of KIR ligands resulted in significantly improved overall and progression-free survival. Patients with KIR3DL1 and HLA-B subtype combinations that were predictive of weak interaction had superior outcomes compared with those that were predictive of strong interaction; however, both groups were inferior to those with noninteracting subtype combinations. In vitro analysis of 3F8-mediated ADCC showed that KIR3DL1(-) and 3DS1(+) NK cells were insensitive to inhibition by HLA-Bw4-expressing NB targets. CONCLUSION We conclude that KIR3LD1 and HLA-B allele combinations can have a prognostic impact on patient survival after treatment with anti-GD2 mAb that relies on NK-ADCC. The survival advantage seen in noninteracting combinations supports the therapeutic disinhibition of individuals with strongly interacting KIR and ligand pairs.