Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanine A. Ursitti is active.

Publication


Featured researches published by Jeanine A. Ursitti.


Journal of Cell Science | 2007

Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization

Michele R. Stone; Andrea O'Neill; Richard M. Lovering; John Strong; Wendy G. Resneck; Patrick W. Reed; Diana M. Toivola; Jeanine A. Ursitti; M. Bishr Omary; Robert J. Bloch

Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. We examined the contractile properties and morphology of fast-twitch skeletal muscle from mice lacking keratin 19. Tibialis anterior muscles of keratin-19-null mice showed a small but significant decrease in mean fiber diameter and in the specific force of tetanic contraction, as well as increased plasma creatine kinase levels. Costameres at the sarcolemma of keratin-19-null muscle, visualized with antibodies against spectrin or dystrophin, were disrupted and the sarcolemma was separated from adjacent myofibrils by a large gap in which mitochondria accumulated. The costameric dystrophin-dystroglycan complex, which co-purified with γ-actin, keratin 8 and keratin 19 from striated muscles of wild-type mice, co-purified with γ-actin but not keratin 8 in the mutant. Our results suggest that keratin 19 in fast-twitch skeletal muscle helps organize costameres and links them to the contractile apparatus, and that the absence of keratin 19 disrupts these structures, resulting in loss of contractile force, altered distribution of mitochondria and mild myopathy. This is the first demonstration of a mammalian phenotype associated with a genetic perturbation of keratin 19.


Clinical Orthopaedics and Related Research | 2002

Costameres: repeating structures at the sarcolemma of skeletal muscle.

Robert J. Bloch; Yassemi Capetanaki; Andrea O'Neill; Patrick W. Reed; McRae W. Williams; Wendy G. Resneck; Neil C. Porter; Jeanine A. Ursitti

Costameres, structures at the plasma membrane of skeletal muscle, are present in a rectilinear array that parallels the organization of the underlying contractile apparatus. Costameres have three major functions: to keep the plasma membrane, or sarcolemma, aligned and in register with nearby contractile structures; to protect the sarcolemma against contraction-induced damage; and to transmit some of the forces of contraction laterally, to the extracellular matrix. These functions require that costameres link the contractile apparatus through the membrane to the extracellular matrix. Mutations to key components of costameres cause these structures to lose their rectilinear organization and can result in muscle weakness or death. This article summarizes the evidence that costameres are composed of large complexes of integral and peripheral membrane proteins that are linked to the contractile apparatus by intermediate filaments and to the extracellular matrix by laminin. They also present evidence that costameres are altered when key costameric components are missing, as in a murine form of muscular dystrophy.


Neuroscience | 2007

The actin binding domain of ACF7 binds directly to the tetratricopeptide repeat domains of rapsyn.

Christian Antolik; Dawn H. Catino; Andrea M. O’Neill; Wendy G. Resneck; Jeanine A. Ursitti; Robert J. Bloch

Formation of the neuromuscular junction requires the release of agrin from the presynaptic terminal of motor neurons. Clustering of acetylcholine receptors (AChRs) on the postsynaptic sarcolemma is initiated by agrin-dependent activation of the muscle-specific kinase. While the postsynaptic scaffolding protein rapsyn is vital for high density AChR aggregation, little is known about the mechanism through which AChRs are immobilized on the postsynaptic membrane. Ultrastructural and immunohistochemical studies of rat skeletal muscle have suggested that AChRs are anchored to a membrane-associated cytoskeleton that contains spectrin-like proteins and is thus similar to that of the human erythrocyte [Bloch RJ, Bezakova G, Ursitti JA, Zhou D, Pumplin DW (1997) A membrane skeleton that clusters nicotinic acetylcholine receptors in muscle. Soc Gen Physiol Ser 52:177-195]. We are studying a protein of the spectrin superfamily, ACF7 (also known as MACF), as a postsynaptic cytoskeletal component of the neuromuscular junction. ACF7 has multiple cytoskeleton-binding domains, including an N-terminal actin-binding domain that, we postulate, may interact with rapsyn, the scaffolding protein that binds directly to AChRs. To test this hypothesis, we co-expressed fragments of these molecules in cultured fibroblasts and assessed their co-distribution and interaction using confocal microscopy and co-immunoprecipitation. We demonstrate that the actin-binding domain of ACF7 specifically interacts with the tetratricopeptide repeat domains of rapsyn. Furthermore, we show using surface plasmon resonance and blot overlay that the actin-binding domain of ACF7 binds directly to rapsyn. These results suggest that, in mammalian skeletal muscle, AChRs are immobilized in the membrane through rapsyn-mediated anchoring to an ACF7-containing network that in turn is linked to the actin cytoskeleton.


Developmental Brain Research | 2001

Spectrins in developing rat hippocampal cells.

Jeanine A. Ursitti; Laura A. Martin; Wendy G. Resneck; Tessa Chaney; Carol L. Zielke; Bradley E. Alger; Robert J. Bloch

We studied the spectrins in developing hippocampal tissue in vivo and in vitro to learn how they contribute to the organization of synaptic and extrasynaptic regions of the neuronal plasma membrane. beta-Spectrin, but not beta-fodrin or alpha-fodrin, increased substantially during postnatal development in the hippocampus, where it was localized in neurons but not in astrocytes. Immunoprecipitations from neonatal and adult hippocampal extracts suggest that while both beta-spectrin and beta-fodrin form heteromers with alpha-fodrin, oligomers containing all three subunits are also present. At the subcellular level, beta-fodrin and alpha-fodrin were present in the cell bodies, dendrites, and axons of pyramidal-like neurons in culture, as well as in astrocytes. beta-Spectrin, by contrast, was absent from axons but present in cell bodies and dendrites, where it was organized in a loose, membrane-associated meshwork that lacked alpha-fodrin. A similar meshwork was also apparent in pyramidal neurons in vivo. At some dendritic spines, alpha-fodrin was present in the necks but not in the heads, whereas beta-spectrin was present at significant levels in the spine heads. The presence of significant amounts of beta-spectrin without an accompanying alpha-fodrin subunit was confirmed by immunoprecipitations from extracts of adult hippocampus. Our results suggest that the spectrins in hippocampal neurons can assemble to form different membrane-associated structures in distinct membrane domains, including those at synapses.


Cell Communication and Signaling | 2013

Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

Peter M. Benz; Carla J Merkel; Kristin Offner; Marco Abeßer; Melanie Ullrich; Tobias Fischer; Barbara Bayer; Helga Wagner; Stepan Gambaryan; Jeanine A. Ursitti; Ibrahim M. Adham; Wolfgang A. Linke; Stephan M. Feller; Ingrid Fleming; Thomas Renné; Stefan Frantz; Andreas Unger; Kai Schuh

BackgroundIn the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks.ResultsWe generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired.ConclusionsTogether, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities.


Journal of Molecular and Cellular Cardiology | 2010

Characterization and expression of a heart-selective alternatively spliced variant of αII-spectrin, cardi+, during development in the rat

Yinghua Zhang; Wendy G. Resneck; Pervis C. Lee; William R. Randall; Robert J. Bloch; Jeanine A. Ursitti

Spectrin is a large, flexible protein that stabilizes membranes and organizes proteins and lipids into microdomains in intracellular organelles and at the plasma membrane. Alternative splicing occurs in spectrins, but it is not yet clear if these small variations in structure alter spectrins functions. Three alternative splice sites have been identified previously for alpha II-spectrin. Here we describe a new alternative splice site, a 21-amino acid sequence in the 21st spectrin repeat that is only expressed in significant amounts in cardiac muscle (GenBank GQ502182). The insert, which we term alpha II-cardi+, results in an insertion within the high affinity nucleation site for binding of alpha-spectrins to beta-spectrins. To assess the developmental regulation of the alpha II-cardi+ isoform, we used qRT-PCR and quantitative immunoblotting methods to measure the levels of this form and the alpha II-cardi- form in the cardiac muscles of rats, from embryonic day 16 (E16) through adulthood. The alpha II-cardi+ isoform constituted approximately 26% of the total alpha II-spectrin in E16 hearts but decreased to approximately 6% of the total after 3 weeks of age. We used long-range RT-PCR and Southern blot hybridization to examine possible linkage of the alpha II-cardi+ alternatively spliced sequence with alternatively spliced sequences of alpha II-spectrin that had been previously reported. We identified two new isoforms of alpha II-spectrin containing the cardi+ insert. These were named alpha II Sigma 9 and alpha II Sigma 10 in accordance with the spectrin naming conventions. In vitro studies of recombinant alpha II-spectrin polypeptides representing the two splice variants of alpha II-spectrin, alpha II-cardi+ and alpha II-cardi-, revealed that the alpha II-cardi+ subunit has lower affinity for the complementary site in repeats 1-4 of betaII-spectrin, with a K(D) value of approximately 1 nM, as measured by surface plasmon resonance (SPR). In addition, the alpha II-cardi+ form showed 1.8-fold lower levels of binding to its site on beta II-spectrin than the alpha II-cardi- form, both by SPR and blot overlay. This suggests that the 21-amino acid insert prevented some of the alpha II-cardi+ form from interacting with beta II-spectrin. Fusion proteins expressing the alpha II-cardi+ sequence within the two terminal spectrin repeats of alpha II-spectrin were insoluble in solution and aggregated in neonatal myocytes, consistent with the possibility that this insert removes a significant portion of the protein from the population that can bind beta subunits. Neonatal rat cardiomyocytes infected with adenovirus encoding GFP-fusion proteins of repeats 18-21 of alpha II-spectrin with the cardi+ insert formed many new processes. These processes were only rarely seen in myocytes expressing the fusion protein lacking the insert or in controls expressing only GFP. Our results suggest that the embryonic mammalian heart expresses a significant amount of alpha II-spectrin with a reduced avidity for beta-spectrin and the ability to promote myocyte growth.


Journal of Biological Chemistry | 1993

Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting.

David W. Speicher; Tara M. DeSilva; Kaye D. Speicher; Jeanine A. Ursitti; Peter Hembach; L Weglarz


Cytoskeleton | 1991

Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane

Jeanine A. Ursitti; David W. Pumplin; James B. Wade; Robert J. Bloch


American Journal of Physiology-heart and Circulatory Physiology | 2004

Sarcoplasmic reticulum calcium defect in Ras-induced hypertrophic cardiomyopathy heart

Meizi Zheng; Keith Dilly; Jader dos Santos Cruz; Manxiang Li; Yusu Gu; Jeanine A. Ursitti; Ju Chen; John Ross; Kenneth R. Chien; Jonathan W. Lederer; Yibin Wang


Journal of Cell Science | 1994

Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons

Jeanine A. Ursitti; Velia M. Fowler

Collaboration


Dive into the Jeanine A. Ursitti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Strong

University of Maryland

View shared research outputs
Researchain Logo
Decentralizing Knowledge