Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeannette M. Garcia.
Nature Chemistry | 2015
Nagaphani B. Aetukuri; Bryan D. McCloskey; Jeannette M. Garcia; Leslie E. Krupp; Venkatasubramanian Viswanathan; Alan C. Luntz
1 IBM Almaden Research Center, San Jose, CA, 95120 2 Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720 3 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 4 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 5 SUNCAT, SLAC National Accelerator Laboratory, Menlo Park, CA 94025Given their high theoretical specific energy, lithium-oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li-ion batteries. However, the maximum discharge capacity in non-aqueous lithium-oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li₂O₂), the batterys primary discharge product. The discharge capacity can be increased if Li₂O₂ forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H₂O, enhance the formation of Li₂O₂ toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li₂O₂ toroids. We present a general formalism describing an additives tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.
Journal of Physical Chemistry Letters | 2013
Bryan D. McCloskey; Alexia Valery; Alan C. Luntz; Sanketh R. Gowda; Gregory M. Wallraff; Jeannette M. Garcia; Takashi Mori; Leslie E. Krupp
Li-air batteries have generated enormous interest as potential high specific energy alternatives to existing energy storage devices. However, Li-air batteries suffer from poor rechargeability caused by the instability of organic electrolytes and carbon cathodes. To understand and address this poor rechargeability, it is essential to elucidate the efficiency in which O2 is converted to Li2O2 (the desired discharge product) during discharge and the efficiency in which Li2O2 is oxidized back to O2 during charge. In this Letter, we combine many quantitative techniques, including a newly developed peroxide titration, to assign and quantify decomposition pathways occurring in cells employing a variety of solvents and cathodes. We find that Li2O2-induced electrolyte solvent and salt instabilities account for nearly all efficiency losses upon discharge, whereas both cathode and electrolyte instabilities are observed upon charge at high potentials.
Science | 2014
Jeannette M. Garcia; Gavin O. Jones; Kumar Virwani; Bryan D. McCloskey; Dylan J. Boday; Gijs M. ter Huurne; Hans W. Horn; Daniel J. Coady; Abdulmalik M. Bintaleb; Abdullah M. Alabdulrahman; Fares D. Alsewailem; Hamid A. Al-Megren; James L. Hedrick
Recyclable Thermoset Polymers The high mechanical strength and durability of thermoset polymers are exploited in applications such as composite materials, where they form the matrix surrounding carbon fibers. The thermally driven polymerization reaction is usually irreversible, so it is difficult to recycle the constituent monomers and to remove and repair portions of a composite part. García et al. (p. 732; see the Perspective by Long) now describe a family of polymers formed by condensation of paraformaldehyde with bisanilines that could form hard thermoset polymers or, when more oxygenated, produce self-healing gels. Strong acid digestion allowed recovery of the bisaniline monomers. A strong polymer formed by heating can be digested with strong acid to recover and recycle its bisaniline monomers. [Also see Perspective by Long] Nitrogen-based thermoset polymers have many industrial applications (for example, in composites), but are difficult to recycle or rework. We report a simple one-pot, low-temperature polycondensation between paraformaldehyde and 4,4ʹ-oxydianiline (ODA) that forms hemiaminal dynamic covalent networks (HDCNs), which can further cyclize at high temperatures, producing poly(hexahydrotriazine)s (PHTs). Both materials are strong thermosetting polymers, and the PHTs exhibited very high Young’s moduli (up to ~14.0 gigapascals and up to 20 gigapascals when reinforced with surface-treated carbon nanotubes), excellent solvent resistance, and resistance to environmental stress cracking. However, both HDCNs and PHTs could be digested at low pH (<2) to recover the bisaniline monomers. By simply using different diamine monomers, the HDCN- and PHT-forming reactions afford extremely versatile materials platforms. For example, when poly(ethylene glycol) (PEG) diamine monomers were used to form HDCNs, elastic organogels formed that exhibited self-healing properties.
Advanced Drug Delivery Reviews | 2014
Victor Wee Lin Ng; Julian M. W. Chan; Haritz Sardon; Robert J. Ono; Jeannette M. Garcia; Yi Yan Yang; James L. Hedrick
The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.
Journal of the American Chemical Society | 2013
Haritz Sardon; Amanda C. Engler; Julian M. W. Chan; Jeannette M. Garcia; Daniel J. Coady; Ana Pascual; David Mecerreyes; Gavin O. Jones; Julia E. Rice; Hans W. Horn; James L. Hedrick
A systematic study of acid organocatalysts for the polyaddition of poly(ethylene glycol) to hexamethylene diisocyanate in solution has been performed. Among organic acids evaluated, sulfonic acids were found the most effective for urethane formations even when compared with conventional tin-based catalysts (dibutyltin dilaurate) or 1,8-diazabicyclo[5.4.0]undec-7-ene. In comparison, phosphonic and carboxylic acids showed considerably lower catalytic activities. Furthermore, sulfonic acids gave polyurethanes with higher molecular weights than was observed using traditional catalyst systems. Molecular modeling was conducted to provide mechanistic insight and supported a dual activation mechanism, whereby ternary adducts form in the presence of acid and engender both electrophilic isocyanate activation and nucleophilic alcohol activation through hydrogen bonding. Such a mechanism suggests catalytic activity is a function of not only acid strength but also inherent conjugate base electron density.
Journal of the American Chemical Society | 2015
Hao Wu; Jeannette M. Garcia; Fredrik Haeffner; Suttipol Radomkit; Adil R. Zhugralin; Amir H. Hoveyda
Broadly applicable enantioselective C-B and C-Si bond-forming processes catalyzed by an N-heterocyclic carbene (NHC) were recently introduced; these boryl and silyl conjugate addition reactions (BCA and SCA, respectively), which proceed without the need for a transition-metal complex, represent reaction pathways that are distinct from those facilitated by transition-metal-containing species (e.g., Cu, Ni, Pt, Pd, or Rh based). The Lewis-base-catalyzed (NHC) transformations are valuable to chemical synthesis, as they can generate high enantioselectivities and possess unique chemoselectivity profiles. Here, the results of investigations that elucidate the principal features of the NHC-catalyzed BCA and SCA processes are detailed. Spectroscopic evidence is provided illustrating why the presence of excess base and MeOH or H2O is required for efficient and enantioselective boryl and silyl addition reactions. It is demonstrated that the proton sources influence the efficiency and/or enantioselectivity of NHC-catalyzed enantioselective transformations in several ways. The positive, and at times adverse, impact of water (biphasic conditions) on catalytic enantioselective silyl addition reactions is analyzed. It is shown that a proton source can facilitate nonenantioselective background reactions and NHC decomposition, requiring the catalyst to surpass such complications. Stereochemical models are presented that account for the identity of the observed major enantiomers, providing a rationale for the differences in selectivity profiles of BCA and SCA processes.
Organic Letters | 2014
Gavin O. Jones; Jeannette M. Garcia; Hans W. Horn; James L. Hedrick
Combined experimental and computational studies have been performed on the mechanism of formation of poly(hexahydrotriazine) and hemiaminal dynamic covalent network (PHT and HDCN) thermosetting polymers from the reactions of diamines with formaldehyde (Science 2014, 344, 732-735). Results suggest that these polymers are formed by a mechanism involving the water promoted stepwise addition of amines with formaldehyde in preference to dimerization or cyclotrimerization of imine intermediates or self-catalysis by the amine reagents. The predicted mechanism also explains experimentally observed electronic effects for hexahydrotriazine formation.
Journal of Physical Chemistry Letters | 2015
Jeannette M. Garcia; Hans W. Horn; Julia E. Rice
The promise of high specific energies for Li-O2 batteries has driven research toward the development of new compatible materials for this emerging technology. Obtained energies, however, fall short of the theoretical values partly due to parasitic chemistries arising from organic solvent decomposition during battery cycling. Electrolyte solvent and salt decomposition have also been identified as limiting factors for rechargeability of the battery. Although lithium trifluorosulfonamide (LiTFSI) dissolved in 1,2-dimethoxyethane (DME) has been shown to be a promising solvent/electrolyte candidate for Li-O2 batteries, significant challenges remain, namely minimizing decomposition of both the solvent and electrolyte salt during battery cycling. Herein, we provide spectroscopic labeling studies to identify the source of H2 at high potentials during charge and propose a decomposition pathway for DME to lithium formate and acetate products at low potentials. NMR studies were preformed to show that DME decomposes to lithium formate and acetate in aqueous Li2O2, products which are also observed after D2O workups on cathodes after discharge. Finally, we use density functional theory (DFT) to elucidate a mechanistic pathway for DME decomposition that is based on known organic oxidation processes.
Nature Communications | 2015
Courtney H. Fox; Gijs M. ter Hurrne; Rudy J. Wojtecki; Gavin O. Jones; Hans W. Horn; E. W. Meijer; Curtis W. Frank; James L. Hedrick; Jeannette M. Garcia
Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives.
Science | 2017
Jeannette M. Garcia; Megan L. Robertson
Chemical advances are increasing the proportion of polymer waste that can be recycled The environmental consequences of plastic solid waste are visible in the ever-increasing levels of global plastic pollution both on land and in the oceans. But although there are important economic and environmental incentives for plastics recycling, end-of-life treatment options for plastic solid waste are in practice quite limited. Presorting of plastics before recycling is costly and time-intensive, recycling requires large amounts of energy and often leads to low-quality polymers, and current technologies cannot be applied to many polymeric materials. Recent research points the way toward chemical recycling methods with lower energy requirements, compatibilization of mixed plastic wastes to avoid the need for sorting, and expanding recycling technologies to traditionally nonrecyclable polymers.