Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeanon N. Smith is active.

Publication


Featured researches published by Jeanon N. Smith.


Vaccine | 2009

Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin

Langzhou Song; Yi Zhang; Nadezhda E. Yun; Allison Poussard; Jeanon N. Smith; Jennifer K. Smith; Viktoriya Borisevich; Jenna Linde; Michele A. Zacks; Hong Li; Uma Kavita; Lucia Reiserova; Xiangyu Liu; Kunmi Dumuren; Bhuvaneswari Balasubramanian; Bruce Weaver; Jason Parent; Scott Umlauf; Ge Liu; Jim Huleatt; Lynda Tussey; Slobodan Paessler

Transmission of highly pathogenic avian influenza (HPAI) between birds and humans is an ongoing threat that holds potential for the emergence of a pandemic influenza strain. A major barrier to an effective vaccine against avian influenza has been the generally poor immunopotency of many of the HPAI strains coupled with the manufacturing constraints employing conventional methodologies. Fusion of flagellin, a toll-like receptor-5 ligand, to vaccine antigens has been shown to enhance the immune response to the fused antigen in preclinical studies. Here, we have evaluated the immunogenicity and efficacy of a panel of flagellin-based hemagglutinin (HA) globular head fusion vaccines in inbred mice. The HA globular head of these vaccines is derived from the A/Vietnam/1203/04 (VN04; H5N1) HA molecule. We find that replacement of domain D3 of flagellin with the VN04 HA globular head creates a highly effective vaccine that elicits protective HAI titers which protect mice against disease and death in a lethal challenge model.


Virology | 2008

Injectable peramivir mitigates disease and promotes survival in ferrets and mice infected with the highly virulent influenza virus, A/Vietnam/1203/04 (H5N1).

Nadezhda E. Yun; Nathaniel S. Linde; Michele A. Zacks; Ian G. Barr; Aeron C. Hurt; Jeanon N. Smith; Natallia Dziuba; Lifang Zhang; John M. Kilpatrick; C. Shane Arnold; Slobodan Paessler

The post-exposure therapeutic efficacy of injectable peramivir against highly pathogenic avian influenza type A H5N1 was evaluated in mice and in ferrets. Seventy to eighty percent of the H5N1-infected peramivir-treated mice, and 70% in the oseltamivir treated mice survived the 15-day study period, as compared to 36% in control (vehicle) group. Ferrets were infected intranasally with H5N1 followed by treatment with multiple doses of peramivir. In two of three trials, a statistically significant increase in survival over a 16-18 day period resulted from peramivir treatment, with improved survival of 40-64% in comparison to mock-treated or untreated animals. Injected peramivir mitigates virus-induced disease, reduces infectious virus titers in the lungs and brains and promotes survival in ferrets infected intranasally with this highly neurovirulent isolate. A single intramuscular peramivir injection protected mice against severe disease outcomes following infection with highly pathogenic avian influenza and multi-dose treatment was efficacious in ferrets.


Journal of Virology | 2010

Mice Lacking Alpha/Beta and Gamma Interferon Receptors Are Susceptible to Junin Virus Infection

Olga A. Kolokoltsova; Nadezda Yun; Allison Poussard; Jennifer K. Smith; Jeanon N. Smith; Milagros Salazar; Aida G. Walker; Chien Te K Tseng; Judith F. Aronson; Slobodan Paessler

ABSTRACT Junin virus (JUNV) causes a highly lethal human disease, Argentine hemorrhagic fever. Previous work has demonstrated the requirement for human transferrin receptor 1 for virus entry, and the absence of the receptor was proposed to be a major cause for the resistance of laboratory mice to JUNV infection. In this study, we present for the first time in vivo evidence that the disruption of interferon signaling is sufficient to generate a disease-susceptible mouse model for JUNV infection. After peripheral inoculation with virulent JUNV, adult mice lacking alpha/beta and gamma interferon receptors developed disseminated infection and severe disease.


Journal of Virology | 2012

Functional interferon system is required for clearance of Lassa virus

Nadezhda E. Yun; Allison Poussard; Alexey Seregin; Aida G. Walker; Jennifer K. Smith; Judith F. Aronson; Jeanon N. Smith; Lynn Soong; Slobodan Paessler

ABSTRACT Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever (LF) in humans, a deadly disease endemic to West Africa that results in 5,000 to 10,000 deaths annually. Here we present results demonstrating that functional type I and type II interferon (IFN) signaling is required for efficient control of LASV dissemination and clearance.


Vaccine | 2009

CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus

Nadezhda E. Yun; Bi Hung Peng; Andrea S. Bertke; Viktoriya Borisevich; Jennifer K. Smith; Jeanon N. Smith; Allison Poussard; Milagros Salazar; Barbara M. Judy; Michele A. Zacks; D. Mark Estes; Slobodan Paessler

Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alphabeta T cells. Nevertheless, antibody treatment did not prevent the development of lethal encephalitis. On the contrary, the adoptive transfer of primed CD4(+) T cells was necessary to prevent lethal encephalitis in mice lacking alphabeta T cell receptor.


Vaccine | 2011

Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine.

Frank R. Jones; Elizabeth S. Gabitzsch; Younong Xu; Joseph P. Balint; Viktoriya Borisevich; Jennifer K. Smith; Jeanon N. Smith; Bi Hung Peng; Aida G. Walker; Magda Salazar; Slobodan Paessler

Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases.


Journal of Virology | 2013

Mice Lacking Functional STAT1 Are Highly Susceptible to Lethal Infection with Lassa Virus

Nadezhda E. Yun; Alexey Seregin; David H. Walker; Vsevolod L. Popov; Aida G. Walker; Jeanon N. Smith; Milagros Miller; Juan Carlos de la Torre; Jennifer K. Smith; Viktoriya Borisevich; Joseph N. Fair; Nadia Wauquier; Donald S. Grant; Bayon Bockarie; Dennis A. Bente; Slobodan Paessler

ABSTRACT Lassa fever (LF) is a potentially lethal human disease that is caused by the arenavirus Lassa virus (LASV). Annually, around 300,000 infections with up to 10,000 deaths occur in regions of Lassa fever endemicity in West Africa. Here we demonstrate that mice lacking a functional STAT1 pathway are highly susceptible to infection with LASV and develop lethal disease with pathology similar to that reported in humans.


Journal of Virology | 2015

The Glycoprotein Precursor Gene of Junin Virus Determines the Virulence of the Romero Strain and the Attenuation of the Candid #1 Strain in a Representative Animal Model of Argentine Hemorrhagic Fever

Alexey Seregin; Nadezhda E. Yun; Milagros Miller; Judith F. Aronson; Jennifer K. Smith; Aida G. Walker; Jeanon N. Smith; Cheng Huang; John T. Manning; Juan Carlos de la Torre; Slobodan Paessler

ABSTRACT The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), a potentially deadly disease endemic to central regions of Argentina. The live-attenuated Candid #1 (Can) strain of JUNV is currently used to vaccinate the human population at risk. However, the mechanism of attenuation of this strain is still largely unknown. Therefore, the identification and functional characterization of viral genetic determinants dictating JUNV virulence or attenuation would significantly improve the understanding of the mechanisms underlying AHF and facilitate the development of novel, more effective, and safer vaccines. Here, we utilized a reverse genetics approach to generate recombinant JUNV (rJUNV) strains encoding different gene combinations of the pathogenic Romero (Rom) and attenuated Can strains of JUNV. All strains of rJUNV exhibited in vitro growth kinetics similar to those of their parental counterparts. Analysis of virulence of the rJUNV in a guinea pig model of lethal infection that closely reproduces the features of AHF identified the envelope glycoproteins (GPs) as the major determinants of pathogenesis and attenuation of JUNV. Accordingly, rJUNV strains expressing the full-length GPs of Rom and Can exhibited virulent and attenuated phenotypes, respectively, in guinea pigs. Mutation F427I in the transmembrane region of JUNV envelope glycoprotein GP2 has been shown to attenuate the neurovirulence of JUNV in suckling mice. We document that in the guinea pig model of AHF, mutation F427I in GP2 is also highly attenuating but insufficient to prevent virus dissemination and development of mild clinical and pathological symptoms, indicating that complete attenuation of JUNV requires additional mutations present in Can glycoprotein precursor (GPC). IMPORTANCE Development of antiviral strategies against viral hemorrhagic fevers, including AHF, is one of the top priorities within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Live-attenuated Candid #1 strain, derived from the 44th mouse brain passage of the prototype XJ strain of JUNV, has been demonstrated to be safe, immunogenic, and highly protective and is currently licensed for human use in Argentina. However, the bases for the attenuated phenotype of Candid #1 have not been established. Therefore, the identification and functional characterization of viral genetic factors implicated in JUNV pathogenesis and attenuation would significantly improve the understanding of the molecular mechanisms underlying AHF and facilitate the development of novel antiviral strategies.


Vaccine | 2011

Rapid, non-invasive imaging of alphaviral brain infection: reducing animal numbers and morbidity to identify efficacy of potential vaccines and antivirals.

Michael Patterson; Allison Poussard; Katherine Taylor; Alexey Seregin; Jeanon N. Smith; Bi Hung Peng; Aida G. Walker; Jenna Linde; Jennifer S. Smith; Milagros Salazar; Slobodan Paessler

Rapid and accurate identification of disease progression are key factors in testing novel vaccines and antivirals against encephalitic alphaviruses. Typical efficacy studies utilize a large number of animals and severe morbidity or mortality as an endpoint. New technologies provide a means to reduce and refine the animal use as proposed in Humes 3Rs (replacement, reduction, refinement) described by Russel and Burch. In vivo imaging systems (IVIS) and bioluminescent enzyme technologies accomplish the reduction of animal requirements while shortening the experimental time and improving the accuracy in localizing active virus replication. In the case of murine models of viral encephalitis in which central nervous system (CNS) viral invasion occurs rapidly but the disease development is relatively slow, we visualized the initial brain infection and enhance the data collection process required for efficacy studies on antivirals or vaccines that are aimed at preventing brain infection. Accordingly, we infected mice through intranasal inoculation with the genetically modified pathogen, Venezuelan equine encephalitis, which expresses a luciferase gene. In this study, we were able to identify the invasion of the CNS at least 3 days before any clinical signs of disease, allowing for reduction of animal morbidity providing a humane means of disease and vaccine research while obtaining scientific data accurately and more rapidly. Based on our data from the imaging model, we confirmed the usefulness of this technology in preclinical research by demonstrating the efficacy of Ampligen, a TLR-3 agonist, in preventing CNS invasion.


Vaccine | 2010

TC83 replicon vectored vaccine provides protection against Junin virus in guinea pigs

Alexey Seregin; Nadezhda E. Yun; Allison Poussard; Bi Hung Peng; Jennifer K. Smith; Jeanon N. Smith; Milagros Salazar; Slobodan Paessler

Junin virus (JUNV) is the etiological agent of the potentially lethal, reemerging human disease, Argentine hemorrhagic fever (AHF). The mechanism of the disease development is not well understood and no antiviral therapy is available. Candid 1, a live-attenuated vaccine, has been developed by the US Army and is being used in the endemic area to prevent AHF. This vaccine is only approved for use in Argentina. In this study we have used the alphavirus-based approach to engineer a replicon system based on a human (United States Food and Drug Administration Investigational New Drug status) vaccine TC83 that express heterologous viral antigens, such as glycoproteins (GPC) of Junin virus (JUNV). Preclinical studies testing the immunogenicity and efficacy of TC83/GPC were performed in guinea pigs. A single dose of the live-attenuated alphavirus based vaccine expressing only GPC was immunogenic and provided partial protection, while a double dose of the same vaccine provided a complete protection against JUNV. This is the first scientific report to our knowledge that the immune response against GPC alone is sufficient to prevent lethal disease against JUNV in an animal model.

Collaboration


Dive into the Jeanon N. Smith's collaboration.

Top Co-Authors

Avatar

Slobodan Paessler

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Nadezhda E. Yun

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Smith

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alexey Seregin

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Aida G. Walker

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Allison Poussard

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Milagros Miller

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Takaaki Koma

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Michael Patterson

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Cheng Huang

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge