Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadezhda E. Yun is active.

Publication


Featured researches published by Nadezhda E. Yun.


Vaccine | 2009

Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin

Langzhou Song; Yi Zhang; Nadezhda E. Yun; Allison Poussard; Jeanon N. Smith; Jennifer K. Smith; Viktoriya Borisevich; Jenna Linde; Michele A. Zacks; Hong Li; Uma Kavita; Lucia Reiserova; Xiangyu Liu; Kunmi Dumuren; Bhuvaneswari Balasubramanian; Bruce Weaver; Jason Parent; Scott Umlauf; Ge Liu; Jim Huleatt; Lynda Tussey; Slobodan Paessler

Transmission of highly pathogenic avian influenza (HPAI) between birds and humans is an ongoing threat that holds potential for the emergence of a pandemic influenza strain. A major barrier to an effective vaccine against avian influenza has been the generally poor immunopotency of many of the HPAI strains coupled with the manufacturing constraints employing conventional methodologies. Fusion of flagellin, a toll-like receptor-5 ligand, to vaccine antigens has been shown to enhance the immune response to the fused antigen in preclinical studies. Here, we have evaluated the immunogenicity and efficacy of a panel of flagellin-based hemagglutinin (HA) globular head fusion vaccines in inbred mice. The HA globular head of these vaccines is derived from the A/Vietnam/1203/04 (VN04; H5N1) HA molecule. We find that replacement of domain D3 of flagellin with the VN04 HA globular head creates a highly effective vaccine that elicits protective HAI titers which protect mice against disease and death in a lethal challenge model.


Virology | 2008

Injectable peramivir mitigates disease and promotes survival in ferrets and mice infected with the highly virulent influenza virus, A/Vietnam/1203/04 (H5N1).

Nadezhda E. Yun; Nathaniel S. Linde; Michele A. Zacks; Ian G. Barr; Aeron C. Hurt; Jeanon N. Smith; Natallia Dziuba; Lifang Zhang; John M. Kilpatrick; C. Shane Arnold; Slobodan Paessler

The post-exposure therapeutic efficacy of injectable peramivir against highly pathogenic avian influenza type A H5N1 was evaluated in mice and in ferrets. Seventy to eighty percent of the H5N1-infected peramivir-treated mice, and 70% in the oseltamivir treated mice survived the 15-day study period, as compared to 36% in control (vehicle) group. Ferrets were infected intranasally with H5N1 followed by treatment with multiple doses of peramivir. In two of three trials, a statistically significant increase in survival over a 16-18 day period resulted from peramivir treatment, with improved survival of 40-64% in comparison to mock-treated or untreated animals. Injected peramivir mitigates virus-induced disease, reduces infectious virus titers in the lungs and brains and promotes survival in ferrets infected intranasally with this highly neurovirulent isolate. A single intramuscular peramivir injection protected mice against severe disease outcomes following infection with highly pathogenic avian influenza and multi-dose treatment was efficacious in ferrets.


Viruses | 2012

Pathogenesis of Lassa Fever

Nadezhda E. Yun; David H. Walker

Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host’s immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents.


Journal of Virology | 2011

Rescue from Cloned cDNAs and In Vivo Characterization of Recombinant Pathogenic Romero and Live-Attenuated Candid #1 Strains of Junin Virus, the Causative Agent of Argentine Hemorrhagic Fever Disease

Sébastien Emonet; Alexey Seregin; Nadezhda E. Yun; Allison Poussard; Aida G. Walker; Juan Carlos de la Torre; Slobodan Paessler

ABSTRACT The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.


Journal of Virology | 2006

Replication and Clearance of Venezuelan Equine Encephalitis Virus from the Brains of Animals Vaccinated with Chimeric SIN/VEE Viruses

Slobodan Paessler; Haolin Ni; Olga Petrakova; Rafik Fayzulin; Nadezhda E. Yun; Michael Anishchenko; Scott C. Weaver; Ilya Frolov

ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic pathogen. Recent outbreaks in Venezuela and Colombia in 1995, involving an estimated 100,000 human cases, indicate that VEEV still poses a serious public health threat. To develop a safe, efficient vaccine that protects against disease resulting from VEEV infection, we generated chimeric Sindbis (SIN) viruses expressing structural proteins of different strains of VEEV and analyzed their replication in vitro and in vivo, as well as the characteristics of the induced immune responses. None of the chimeric SIN/VEE viruses caused any detectable disease in adult mice after either intracerebral (i.c.) or subcutaneous (s.c.) inoculation, and all chimeras were more attenuated than the vaccine strain, VEEV TC83, in 6-day-old mice after i.c. infection. All vaccinated mice were protected against lethal encephalitis following i.c., s.c., or intranasal (i.n.) challenge with the virulent VEEV ZPC738 strain (ZPC738). In spite of the absence of clinical encephalitis in vaccinated mice challenged with ZPC738 via i.n. or i.c. route, we regularly detected high levels of infectious challenge virus in the central nervous system (CNS). However, infectious virus was undetectable in the brains of all immunized animals at 28 days after challenge. Hamsters vaccinated with chimeric SIN/VEE viruses were also protected against s.c. challenge with ZPC738. Taken together, our findings suggest that these chimeric SIN/VEE viruses are safe and efficacious in adult mice and hamsters and are potentially useful as VEEV vaccines. In addition, immunized animals provide a useful model for studying the mechanisms of the anti-VEEV neuroinflammatory response, leading to the reduction of viral titers in the CNS and survival of animals.


Journal of Virology | 2011

Antiviral Activity of a Small-Molecule Inhibitor of Arenavirus Glycoprotein Processing by the Cellular Site 1 Protease

Shuzo Urata; Nadezhda E. Yun; Antonella Pasquato; Slobodan Paessler; Stefan Kunz; Juan Carlos de la Torre

ABSTRACT Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compounds potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.


Virology | 2007

Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection

Slobodan Paessler; Nadezhda E. Yun; Barbara M. Judy; Natallia Dziuba; Michele A. Zacks; Anna H. Grund; Ilya Frolov; Gerald A. Campbell; Scott C. Weaver; D. Mark Estes

Abstract We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta (αβ) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta (γδ) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient (μMT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3+ T cells are required for protection.


Virology | 2008

Inhibition of alphavirus infection in cell culture and in mice with antisense morpholino oligomers

Slobodan Paessler; Rene Rijnbrand; David A. Stein; Haolin Ni; Nadezhda E. Yun; Natallia Dziuba; Viktoriya Borisevich; Alexey Seregin; Yinghong Ma; Robert Blouch; Patrick L. Iversen; Michele A. Zacks

Abstract The genus Alphavirus contains members that threaten human health, both as natural pathogens and as potential biological weapons. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) enter cells readily and can inhibit viral replication through sequence-specific steric blockade of viral RNA. Sindbis virus (SINV) has low pathogenicity in humans and is regularly utilized as a model alphavirus. PPMO targeting the 5′-terminal and AUG translation start site regions of the SINV genome blocked the production of infectious SINV in tissue culture. PPMO designed against corresponding regions in Venezuelan equine encephalitis virus (VEEV) were likewise found to be effective in vitro against several strains of VEEV. Mice treated with PPMO before and after VEEV infection were completely protected from lethal outcome while mice receiving only post-infection PPMO treatment were partially protected. Levels of virus in tissue samples correlated with animal survival. Uninfected mice suffered no apparent ill-effects from PPMO treatment. Thus, PPMO appear promising as candidates for therapeutic development against alphaviruses.


Journal of Virology | 2012

Functional interferon system is required for clearance of Lassa virus

Nadezhda E. Yun; Allison Poussard; Alexey Seregin; Aida G. Walker; Jennifer K. Smith; Judith F. Aronson; Jeanon N. Smith; Lynn Soong; Slobodan Paessler

ABSTRACT Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever (LF) in humans, a deadly disease endemic to West Africa that results in 5,000 to 10,000 deaths annually. Here we present results demonstrating that functional type I and type II interferon (IFN) signaling is required for efficient control of LASV dissemination and clearance.


Vaccine | 2009

CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus

Nadezhda E. Yun; Bi Hung Peng; Andrea S. Bertke; Viktoriya Borisevich; Jennifer K. Smith; Jeanon N. Smith; Allison Poussard; Milagros Salazar; Barbara M. Judy; Michele A. Zacks; D. Mark Estes; Slobodan Paessler

Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alphabeta T cells. Nevertheless, antibody treatment did not prevent the development of lethal encephalitis. On the contrary, the adoptive transfer of primed CD4(+) T cells was necessary to prevent lethal encephalitis in mice lacking alphabeta T cell receptor.

Collaboration


Dive into the Nadezhda E. Yun's collaboration.

Top Co-Authors

Avatar

Slobodan Paessler

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jeanon N. Smith

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alexey Seregin

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Smith

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Aida G. Walker

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Michele A. Zacks

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Allison Poussard

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Milagros Miller

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Takaaki Koma

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Cheng Huang

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge