Jed A. Fuhrman
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jed A. Fuhrman.
Nature | 1999
Jed A. Fuhrman
Viruses are the most common biological agents in the sea, typically numbering ten billion per litre. They probably infect all organisms, can undergo rapid decay and replenishment, and influence many biogeochemical and ecological processes, including nutrient cycling, system respiration, particle size-distributions and sinking rates, bacterial and algal biodiversity and species distributions, algal bloom control, dimethyl sulphide formation and genetic transfer. Newly developed fluorescence and molecular techniques leave the field poised to make significant advances towards evaluating and quantifying such effects.
Marine Biology | 1982
Jed A. Fuhrman; Farooq Azam
To assess bacterioplankton production in the sea, we have developed a procedure for measuring growth based on incorporation of tritiated thymidine into DNA; the accuracy of this procedure was tested under a variety of laboratory and field conditions. By autoradiography, we have found that for all practical purposes our technique is specific for the nonphotosynthetic bacteria and that virtually all of the “active” bacteria (one-third or more of the total countable bacteria) take up thymidine. We also measured (1) the intracellular isotope dilution of thymidine assessed by parallel experiments with labeled phosphorus, and (2) DNA content of natural marine bacteria (0.2 to 0.6 μm size fraction); a conversion factor derived from these data permitted estimation of production from thymidine incorporation results. A very similar conversion factor was independently derived from the empirical relationship between thymidine incorporation and growth of natural bacterioplankton under controlled conditions. Combined results show that this technique, which can be performed rapidly and easily at sea, provides good estimates of production. Data from Southern California Bight waters, which contain oligotrophic as well as moderately eutrophic regions, show that average bacterioplankton doubling times, like those of the phytoplankton, are on the order of a few days, with fastest growth at depths just below those of greatest phytoplankton abundance. Offshore bacterial production is roughly 5 to 25% of the primary production; thus, at a 50% assimilation efficiency, the bacterioplankton would consume 10 to 50% of the total fixed carbon.
Nature | 2009
Jed A. Fuhrman
Marine microbial communities are engines of globally important processes, such as the marine carbon, nitrogen and sulphur cycles. Recent data on the structures of these communities show that they adhere to universal biological rules. Co-occurrence patterns can help define species identities, and systems-biology tools are revealing networks of interacting microorganisms. Some microbial systems are found to change predictably, helping us to anticipate how microbial communities and their activities will shift in a changing world.
Nature Reviews Microbiology | 2012
China A. Hanson; Jed A. Fuhrman; M. Claire Horner-Devine; Jennifer B. H. Martiny
Recently, microbiologists have established the existence of biogeographic patterns among a wide range of microorganisms. The focus of the field is now shifting to identifying the mechanisms that shape these patterns. Here, we propose that four processes — selection, drift, dispersal and mutation — create and maintain microbial biogeographic patterns on inseparable ecological and evolutionary scales. We consider how the interplay of these processes affects one biogeographic pattern, the distance–decay relationship, and review evidence from the published literature for the processes driving this pattern in microorganisms. Given the limitations of inferring processes from biogeographic patterns, we suggest that studies should focus on directly testing the underlying processes.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Jed A. Fuhrman; Ian Hewson; Michael S. Schwalbach; Joshua A. Steele; Mark V. Brown; Shahid Naeem
Factors influencing patterns in the distribution and abundance of plant and animal taxa modulate ecosystem function and ecosystem response to environmental change, which is often taken to infer low functional redundancy among such species, but such relationships are poorly known for microbial communities. Using high-resolution molecular fingerprinting, we demonstrate the existence of extraordinarily repeatable temporal patterns in the community composition of 171 operational taxonomic units of marine bacterioplankton over 4.5 years at our Microbial Observatory site, 20 km off the southern California coast. These patterns in distribution and abundance of microbial taxa were highly predictable and significantly influenced by a broad range of both abiotic and biotic factors. These findings provide statistically robust demonstration of temporal patterning in marine bacterial distribution and abundance, which suggests that the distribution and abundance of bacterial taxa may modulate ecosystem function and response and that a significant subset of the bacteria exhibit low levels of functional redundancy as documented for many plant and animal communities.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jed A. Fuhrman; Joshua A. Steele; Ian Hewson; Michael S. Schwalbach; Mark V. Brown; Jessica L. Green; James H. Brown
For two centuries, biologists have documented a gradient of animal and plant biodiversity from the tropics to the poles but have been unable to agree whether it is controlled primarily by productivity, temperature, or historical factors. Recent reports that find latitudinal diversity gradients to be reduced or absent in some unicellular organisms and attribute this to their high abundance and dispersal capabilities would suggest that bacteria, the smallest and most abundant organisms, should exhibit no latitudinal pattern of diversity. We used amplified ribosomal intergenic spacer analysis (ARISA) whole-assemblage genetic fingerprinting to quantify species richness in 103 near-surface samples of marine bacterial plankton, taken from tropical to polar in both hemispheres. We found a significant latitudinal gradient in richness. The data can help to evaluate hypotheses about the cause of the gradient. The correlations of richness with latitude and temperature were similarly strong, whereas correlations with parameters relating to productivity (chlorophyll, annual primary productivity, bacterial abundance) and other variables (salinity and distance to shore) were much weaker. Despite the high abundance and potentially high dispersal of bacteria, they exhibit geographic patterns of species diversity that are similar to those seen in other organisms. The latitudinal gradient in marine bacteria supports the hypothesis that the kinetics of metabolism, setting the pace for life, has strong influence on diversity.
Applied and Environmental Microbiology | 2000
Cleber C. Ouverney; Jed A. Fuhrman
ABSTRACT Archaea are traditionally thought of as “extremophiles,” but recent studies have shown that marine planktonic Archaea make up a surprisingly large percentage of ocean midwater microbial communities, up to 60% of the total prokaryotes. However, the basic physiology and contribution of Archaea to community microbial activity remain unknown. We have studied Archaea from 200-m depths of the northwest Mediterranean Sea and the Pacific Ocean near California, measuring the archaeal activity under simulated natural conditions (8 to 17°C, dark and anaerobic) by means of a method called substrate tracking autoradiography fluorescence in situ hybridization (STARFISH) that simultaneously detects specific cell types by 16S rRNA probe binding and activity by microautoradiography. In the 200-m-deep Mediterranean and Pacific samples, cells binding the archaeal probes made up about 43 and 14% of the total countable cells, respectively. Our results showed that the Archaea are active in the uptake of dissolved amino acids from natural concentrations (nanomolar) with about 60% of the individuals in the archaeal communities showing measurable uptake. Bacteria showed a similar proportion of active cells. We concluded that a portion of these Archaea is heterotrophic and also appears to coexist successfully with Bacteria in the same water.
PLOS ONE | 2011
Lucie Zinger; Linda A. Amaral-Zettler; Jed A. Fuhrman; M. Claire Horner-Devine; Susan M. Huse; David B. Mark Welch; Jennifer B. H. Martiny; Mitchell L. Sogin; Antje Boetius; Alban Ramette
Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global oceans surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the Worlds oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed.
The ISME Journal | 2011
Joshua A. Steele; Peter D. Countway; Li Xia; Patrick Vigil; J. Michael Beman; Diane Y. Kim; Cheryl-Emiliane T Chow; Rohan Sachdeva; Adriane C. Jones; Michael S. Schwalbach; Julie M. Rose; Ian Hewson; Anand Patel; Fengzhu Sun; David A. Caron; Jed A. Fuhrman
Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone’ species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.
Falkowski, P G , Woodhead, A D Environmental Science Research; Primary productivity and biogeochemical cycles in the sea | 1992
Jed A. Fuhrman
More than a decade has passed since the realization that bacteria are quantitatively important consumers of organic carbon in marine food webs. The basic information on the significance of the microbial food web was put forth eloquently by Pomeroy (1974), who pieced together data from a variety of sources that all indicated a major role of small heterotrophs consuming dissolved and particulate material. However, these ideas did not gain wide recognition until the high abundance of marine bacteria was shown by epifluorescence microscopy (Ferguson and Rublee, 1976; Hobbie et al., 1977), and the bacterial heterotrophic production was shown to be large (i.e., 10–30%) compared to primary production (Hagstrőm et al., 1979; Fuhrman and Azam, 1980; 1982). With reasonable estimates of bacterial growth efficiency (i.e., near 50%), it became clear that heterotrophic bacteria consume an amount of carbon equivalent to approximately 20–60% of total primary production. Williams (1981) reached this conclusion when he synthesized the extant results on bacterial biomass and production. He also showed that “normal” well-known processes and mechanisms could lead to as much as 60% of the primary production becoming dissolved organic carbon (DOC), and subsequently, being taken up by bacteria. Azam et al. (1983) formalized the concept of the microbial loop by which significant quantities of organic matter are produced or processed through prokaryotic and very small eukaryotic organisms, eventually feeding into the larger macrozooplankton.