Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jed N. Lampe is active.

Publication


Featured researches published by Jed N. Lampe.


Journal of Biological Chemistry | 2010

Two-dimensional NMR and All-atom Molecular Dynamics of Cytochrome P450 CYP119 Reveal Hidden Conformational Substates

Jed N. Lampe; Relly Brandman; Santhosh Sivaramakrishnan; Paul R. Ortiz de Montellano

Cytochrome P450 enzymes are versatile catalysts involved in a wide variety of biological processes from hormonal regulation and antibiotic synthesis to drug metabolism. A hallmark of their versatility is their promiscuous nature, allowing them to recognize a wide variety of chemically diverse substrates. However, the molecular details of this promiscuity have remained elusive. Here, we have utilized two-dimensional heteronuclear single quantum coherence NMR spectroscopy to examine a series of mutants site-specific labeled with the unnatural amino acid, [13C]p-methoxyphenylalanine, in conjunction with all-atom molecular dynamics simulations to examine substrate and inhibitor binding to CYP119, a P450 from Sulfolobus acidocaldarius. The results suggest that tight binding hydrophobic ligands tend to lock the enzyme into a single conformational substate, whereas weak binding low affinity ligands bind loosely in the active site, resulting in a distribution of localized conformers. Furthermore, the molecular dynamics simulations suggest that the ligand-free enzyme samples ligand-bound conformations of the enzyme and, therefore, that ligand binding may proceed largely through a process of conformational selection rather than induced fit.


Chemical Research in Toxicology | 2014

Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity.

Sylvie Kandel; Jed N. Lampe

Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein–protein interactions play a critical role in this process. Historically, the study of CYP–protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein–protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein–protein interactions with CYP enzymes.


Journal of the American Chemical Society | 2008

Ligand-induced conformational heterogeneity of cytochrome P450 CYP119 identified by 2D NMR spectroscopy with the unnatural amino acid (13)C-p-methoxyphenylalanine.

Jed N. Lampe; Stephen N. Floor; John D. Gross; Clinton R. Nishida; Yongying Jiang; Michael J. Trnka; Paul R. Ortiz de Montellano

Conformational dynamics are thought to play an important role in ligand binding and catalysis by cytochrome P450 enzymes, but few techniques exist to examine them in molecular detail. Using a unique isotopic labeling strategy, we have site specifically inserted a (13)C-labeled unnatural amino acid residue, (13)C-p-methoxyphenylalanine (MeOF), into two different locations in the substrate binding region of the thermophilic cytochrome P450 enzyme CYP119. Surprisingly, in both cases the resonance signal from the ligand-free protein is represented by a doublet in the (1)H,(13)C-HSQC spectrum. Upon binding of 4-phenylimidazole, the signals from the initial resonances are reduced in favor of a single new resonance, in the case of the F162MeOF mutant, or two new resonances, in the case of the F153MeOF mutant. This represents the first direct physical evidence for the ligand-dependent existence of multiple P450 conformers simultaneously in solution. This general approach may be used to further illuminate the role that conformational dynamics plays in the complex enzymatic phenomena exhibited by P450 enzymes.


Drug Metabolism and Disposition | 2014

Common Drugs Inhibit Human Organic Cation Transporter 1 (OCT1)-Mediated Neurotransmitter Uptake

Kelli H. Boxberger; Bruno Hagenbuch; Jed N. Lampe

The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level.


Toxicology and Applied Pharmacology | 2011

MOUSE STRAIN-DEPENDENT CASPASE ACTIVATION DURING ACETAMINOPHEN HEPATOTOXICITY DOES NOT RESULT IN APOPTOSIS OR MODULATION OF INFLAMMATION

C. David Williams; Michael R. Koerner; Jed N. Lampe; Anwar Farhood; Hartmut Jaeschke

UNLABELLED The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only <0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, >20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. CONCLUSION Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change.


Journal of Biological Chemistry | 2015

Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

Debashree Basudhar; Yarrow Madrona; Sylvie Kandel; Jed N. Lampe; Clinton R. Nishida; Paul R. Ortiz de Montellano

Background: CYP119 structural rearrangements were examined by 1H,15N HSQC NMR of 15N-labeled Phe residues and x-ray crystallography. Results: In solution, an open conformation of CYP119 is favored, but ligand-dependent F-G loop rearrangements produce two distinct closed conformations. Conclusion: The two closed conformations are generated by ligands that differ by a fluoro to chloro substitution. Significance: Cytochrome P450 enzymes ratchet among a discontinuous set of discrete conformations. Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.


Toxicology and Applied Pharmacology | 2016

The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction

Kevin Beggs; Steven R. McGreal; Alex McCarthy; Sumedha Gunewardena; Jed N. Lampe; Christoper Lau; Udayan Apte

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers.


Annual Reports in Medicinal Chemistry | 2014

Cytochrome P450 Enzyme Metabolites in Lead Discovery and Development.

Sylvie Kandel; Larry C. Wienkers; Jed N. Lampe

The cytochrome P450 (CYP) enzymes are a versatile superfamily of heme-containing monooxygenases, perhaps best known for their role in the oxidation of xenobiotic compounds. However, due to their unique oxidative chemistry, CYPs are also important in natural product drug discovery and in the generation of active metabolites with unique therapeutic properties. New tools for the analysis and production of CYP metabolites, including microscale analytical technologies and combinatorial biosynthesis, are providing medicinal chemists with the opportunity to use CYPs as a novel platform for lead discovery and development. In this review, we will highlight some of the recent examples of drug leads identified from CYP metabolites and the exciting possibilities of using CYPs as catalysts for future drug discovery.


Frontiers in Pharmacology | 2017

Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques

Jed N. Lampe

In recent years, a growing appreciation has developed for the importance of protein-protein interactions to modulate the function of drug metabolizing enzymes. Accompanied with this appreciation, new methods and technologies have been designed for analyzing protein-protein interactions both in vitro and in vivo. These technologies have been applied to several classes of drug metabolizing enzymes, including: cytochrome P450s (CYPs), monoamine oxidases (MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and sulfotransferases (SULTs). In this review, we offer a brief description and assessment of the impact of many of these technologies to the study of protein-protein interactions in drug disposition. The still expanding list of these techniques and assays has the potential to revolutionize our understanding of how these enzymes carry out their important functions in vivo.


Drug Metabolism and Disposition | 2017

Digging Deeper into CYP3A Testosterone Metabolism: Kinetic, Regioselectivity, and Stereoselectivity Differences between CYP3A4/5 and CYP3A7

Sylvie Kandel; Lyrialle W. Han; Qingcheng Mao; Jed N. Lampe

The metabolism of testosterone to 6β-hydroxytestosterone (6β-OH-T) is a commonly used assay to evaluate human CYP3A enzyme activities. However, previous reports have indicated that CYP3A7 also produces 2α-hydroxytestosterone (2α-OH-T) and that a 2α-OH-T/6β-OH-T ratio may be a unique endogenous biomarker of the activity of the enzyme. Until now, the full metabolite and kinetic profile for testosterone hydroxylation by CYP3A7 has not been fully examined. To this end, we performed a complete kinetic analysis of the 6β-OH-T, 2α-OH-T, and 2β-hydroxytestosterone metabolites for recombinant Supersome CYP3A4, CYP3A5, and CYP3A7 enzymes and monitored metabolism in fetal and adult human liver microsomes for comparison. In general, a decrease in the velocity of the reaction was observed between CYP3A4 and the two other enzymes, with CYP3A7 showing the lowest metabolic capacity. Interestingly, we found that the 2α-OH-T/6β-OH-T ratio varied with substrate concentration when testosterone was incubated with CYP3A7, suggesting that this ratio would likely not function well as a biomarker for CYP3A7 activity. In silico docking studies revealed at least two different binding modes for testosterone between CYP3A4 and CYP3A7. In CYP3A4, the most energetically favorable docking mode places testosterone in a position with the methyl groups directed toward the heme iron, which is more favorable for oxidation at C6β, whereas for CYP3A7 the testosterone methyl groups are positioned away from the heme, which is more favorable for an oxidation event at C2α. In conclusion, our data indicate an alternative binding mode for testosterone in CYP3A7 that favors the 2α-hydroxylation, suggesting significant structural differences in its active site compared with CYP3A4/5.

Collaboration


Dive into the Jed N. Lampe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Wen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Relly Brandman

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge