Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jee Yeon Hwang is active.

Publication


Featured researches published by Jee Yeon Hwang.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death

Kyung-Min Noh; Jee Yeon Hwang; Antonia Follenzi; Rodoniki Athanasiadou; Takahiro Miyawaki; John M. Greally; R. Suzanne Zukin

Dysregulation of the transcriptional repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor is important in a broad range of diseases, including cancer, diabetes, and heart disease. The role of REST-dependent epigenetic modifications in neurodegeneration is less clear. Here, we show that neuronal insults trigger activation of REST and CoREST in a clinically relevant model of ischemic stroke and that REST binds a subset of “transcriptionally responsive” genes (gria2, grin1, chrnb2, nefh, nfκb2, trpv1, chrm4, and syt6), of which the AMPA receptor subunit GluA2 is a top hit. Genes with enriched REST exhibited decreased mRNA and protein. We further show that REST assembles with CoREST, mSin3A, histone deacetylases 1 and 2, histone methyl-transferase G9a, and methyl CpG binding protein 2 at the promoters of target genes, where it orchestrates epigenetic remodeling and gene silencing. RNAi-mediated depletion of REST or administration of dominant-negative REST delivered directly into the hippocampus in vivo prevents epigenetic modifications, restores gene expression, and rescues hippocampal neurons. These findings document a causal role for REST-dependent epigenetic remodeling in the neurodegeneration associated with ischemic stroke and identify unique therapeutic targets for the amelioration of hippocampal injury and cognitive deficits.


Neurobiology of Disease | 2000

A Novel Neuroprotective Mechanism of Riluzole: Direct Inhibition of Protein Kinase C

Kyung-Min Noh; Jee Yeon Hwang; Hyung Cheul Shin; Jae Young Koh

In addition to its antiexcitotoxic action, the anti-amyotrophic lateral sclerosis (ALS) neuroprotectant riluzole protects against nonexcitotoxic oxidative neuronal injury. In light of evidence that protein kinase C (PKC) mediates oxidative stress in cortical culture, we examined the possibility that riluzoles antioxidative neuroprotection involves PKC inhibition. Riluzole (30 microM) blocked phorbol 12-myristate 13-acetate (PMA)-induced increases in membrane PKC activity in cultured cortical cells. Suggesting a direct action, riluzole also inhibited the activity of purified PKC. Consistently, both PKC depletion and oxidative neuronal death induced by PMA were markedly attenuated by riluzole. The site of action of riluzole on PKC was not likely the diacylglycerol binding site but the catalytic domain, since riluzole did not alter radiolabeled phorbol-12,13-dibutyrate binding, but inhibited PKM, the catalytic domain of PKC. However, increasing ATP concentrations did not alter the inhibition of PKC by riluzole, making it unlikely that riluzole is a competitive inhibitor of ATP binding at PKM. Present results have demonstrated that riluzole directly inhibits PKC, which action may contribute to its antioxidative neuroprotective effects. In addition, it appears possible that PKC inhibition may be able to explain some of its well-known channel inhibitory and neuroprotective effects. Combined with findings that PKC activity is increased in ALS, the present results suggest that PKC may be a potential therapeutic target in ALS.


Neuropsychopharmacology | 2013

Epigenetic Mechanisms in Stroke and Epilepsy

Jee Yeon Hwang; Kelly A. Aromolaran; R. Suzanne Zukin

Epigenetic remodeling and modifications of chromatin structure by DNA methylation and histone modifications represent central mechanisms for the regulation of neuronal gene expression during brain development, higher-order processing, and memory formation. Emerging evidence implicates epigenetic modifications not only in normal brain function, but also in neuropsychiatric disorders. This review focuses on recent findings that disruption of chromatin modifications have a major role in the neurodegeneration associated with ischemic stroke and epilepsy. Although these disorders differ in their underlying causes and pathophysiology, they share a common feature, in that each disorder activates the gene silencing transcription factor REST (repressor element 1 silencing transcription factor), which orchestrates epigenetic remodeling of a subset of ‘transcriptionally responsive targets’ implicated in neuronal death. Although ischemic insults activate REST in selectively vulnerable neurons in the hippocampal CA1, seizures activate REST in CA3 neurons destined to die. Profiling the array of genes that are epigenetically dysregulated in response to neuronal insults is likely to advance our understanding of the mechanisms underlying the pathophysiology of these disorders and may lead to the identification of novel therapeutic strategies for the amelioration of these serious human conditions.


The Journal of Neuroscience | 2013

Survivin Is a Transcriptional Target of STAT3 Critical to Estradiol Neuroprotection in Global Ischemia

Yoshihide Sehara; Kirsty Sawicka; Jee Yeon Hwang; Adrianna Latuszek-Barrantes; Anne M. Etgen; R. Suzanne Zukin

Transient global ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons in humans and animals. It is well established that estrogens ameliorate neuronal death in animal models of focal and global ischemia. However, the role of signal transducer and activator of transcription-3 (STAT3) and its target genes in estradiol neuroprotection in global ischemia remains unclear. Here we show that a single intracerebral injection of 17β-estradiol to ovariectomized female rats immediately after ischemia rescues CA1 neurons destined to die. Ischemia promotes activation of STAT3 signaling, association of STAT3 with the promoters of target genes, and STAT3-dependent mRNA and protein expression of prosurvival proteins in the selectively vulnerable CA1. In animals subjected to ischemia, acute postischemic estradiol further enhances activation and nuclear translocation of STAT3 and STAT3-dependent transcription of target genes. Importantly, we show that STAT3 is critical to estradiol neuroprotection, as evidenced by the ability of STAT3 inhibitor peptide and STAT3 shRNA delivered directly into the CA1 of living animals to abolish neuroprotection. In addition, we identify survivin, a member of the inhibitor-of-apoptosis family of proteins and known gene target of STAT3, as essential to estradiol neuroprotection, as evidenced by the ability of shRNA to survivin to reverse neuroprotection. These findings indicate that ischemia and estradiol act synergistically to promote activation of STAT3 and STAT3-dependent transcription of survivin in insulted CA1 neurons and identify STAT3 and survivin as potentially important therapeutic targets in an in vivo model of global ischemia.


Journal of Molecular Biology | 2014

The Gene Silencing Transcription Factor REST Represses miR-132 Expression in Hippocampal Neurons Destined to Die

Jee Yeon Hwang; Naoki Kaneko; Kyung-Min Noh; Fabrizio Pontarelli; R. Suzanne Zukin

The gene silencing transcription factor REST [repressor element 1 silencing transcription factor]/NRSF (neuron-restrictive silencer factor) actively represses a large array of coding and noncoding neuron-specific genes important to synaptic plasticity including miR-132. miR-132 is a neuron-specific microRNA and plays a pivotal role in synaptogenesis, synaptic plasticity and structural remodeling. However, a role for miR-132 in neuronal death is not, as yet, well-delineated. Here we show that ischemic insults promote REST binding and epigenetic remodeling at the miR-132 promoter and silencing of miR-132 expression in selectively vulnerable hippocampal CA1 neurons. REST occupancy was not altered at the miR-9 or miR-124a promoters despite the presence of repressor element 1 sites, indicating REST target specificity. Ischemia induced a substantial decrease in two marks of active gene transcription, dimethylation of lysine 4 on core histone 3 (H3K4me2) and acetylation of lysine 9 on H3 (H3K9ac) at the miR-132 promoter. RNAi-mediated depletion of REST in vivo blocked ischemia-induced loss of miR-132 in insulted hippocampal neurons, consistent with a causal relation between activation of REST and silencing of miR-132. Overexpression of miR-132 in primary cultures of hippocampal neurons or delivered directly into the CA1 of living rats by means of the lentiviral expression system prior to induction of ischemia afforded robust protection against ischemia-induced neuronal death. These findings document a previously unappreciated role for REST-dependent repression of miR-132 in the neuronal death associated with global ischemia and identify a novel therapeutic target for amelioration of the neurodegeneration and cognitive deficits associated with ischemic stroke.


The Journal of Neuroscience | 2014

Casein Kinase 1 Suppresses Activation of REST in Insulted Hippocampal Neurons and Halts Ischemia-Induced Neuronal Death

Naoki Kaneko; Jee Yeon Hwang; Michael Gertner; Fabrizio Pontarelli; R. Suzanne Zukin

Repressor Element-1 (RE1) Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF) is a gene-silencing factor that is widely expressed during embryogenesis and plays a strategic role in neuronal differentiation. Recent studies indicate that REST can be activated in differentiated neurons during a critical window of time in postnatal development and in adult neurons in response to neuronal insults such as seizures and ischemia. However, the mechanism by which REST is regulated in neurons is as yet unknown. Here, we show that REST is controlled at the level of protein stability via β-TrCP-dependent, ubiquitin-based proteasomal degradation in differentiated neurons under physiological conditions and identify Casein Kinase 1 (CK1) as an upstream effector that bidirectionally regulates REST cellular abundance. CK1 associates with and phosphorylates REST at two neighboring, but distinct, motifs within the C terminus of REST critical for binding of β-TrCP and targeting of REST for proteasomal degradation. We further show that global ischemia in rats in vivo triggers a decrease in CK1 and an increase in REST in selectively vulnerable hippocampal CA1 neurons. Administration of the CK1 activator pyrvinium pamoate by in vivo injection immediately after ischemia restores CK1 activity, suppresses REST expression, and rescues neurons destined to die. Our results identify a novel and previously unappreciated role for CK1 as a brake on REST stability and abundance in adult neurons and reveal that loss of CK1 is causally related to ischemia-induced neuronal death. These findings point to CK1 as a potential therapeutic target for the amelioration of hippocampal injury and cognitive deficits associated with global ischemia.


Nature Reviews Neuroscience | 2017

The emerging field of epigenetics in neurodegeneration and neuroprotection

Jee Yeon Hwang; Kelly A. Aromolaran; R. Suzanne Zukin

Epigenetic mechanisms — including DNA methylation, histone post-translational modifications and changes in nucleosome positioning — regulate gene expression, cellular differentiation and development in almost all tissues, including the brain. In adulthood, changes in the epigenome are crucial for higher cognitive functions such as learning and memory. Striking new evidence implicates the dysregulation of epigenetic mechanisms in neurodegenerative disorders and diseases. Although these disorders differ in their underlying causes and pathophysiologies, many involve the dysregulation of restrictive element 1-silencing transcription factor (REST), which acts via epigenetic mechanisms to regulate gene expression. Although not somatically heritable, epigenetic modifications in neurons are dynamic and reversible, which makes them good targets for therapeutic intervention.


Developmental Cell | 2011

β-Catenin-Dependent FGF Signaling Sustains Cell Survival in the Anterior Embryonic Head by Countering Smad4

Hunki Paek; Jee Yeon Hwang; R. Suzanne Zukin; Jean M. Hébert

Growing evidence suggests that FGFs secreted from embryonic signaling centers are key mediators of cell survival. However, the mechanisms regulating FGF-dependent cell survival remain obscure. At the rostral end of the embryo, for example, ablation of FGF signaling leads to the rapid death of the precursor cells that form the anterior head, including the telencephalon. Here, we outline a core genetic circuit that regulates survival in the embryonic mouse head: WNT signaling through β-catenin directly maintains FGF expression and requires FGF function in vivo to oppose proapoptotic TGF-β signaling through SMAD4. Moreover, these antagonistic pathways converge on the transcriptional regulation of apoptosis, and genes such as Cdkn1a, suggesting a mechanism for how signaling centers in the embryonic head regulate cell survival.


Brain Research | 2015

Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia

Koichi Takeuchi; Yupeng Yang; Yukihiro Takayasu; Michael Gertner; Jee Yeon Hwang; Kelly A. Aromolaran; R. Suzanne Zukin

Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. This article is part of a Special Issue entitled SI: Brain and Memory.


Science Signaling | 2017

Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome

Alexander Pyronneau; Qionger He; Jee Yeon Hwang; Morgan W. Porch; Anis Contractor; R. Suzanne Zukin

Inhibiting Rac1-PAK-LIMK signaling may restore synaptic function and sensory processing in patients with fragile X syndrome. Rac1-PAK signaling a target for FXS therapy? The inherited intellectual disability and autism-associated disorder fragile X syndrome (FXS) is caused by the loss of the mRNA-binding protein FMRP and characterized by an increased formation, but impaired maturation, of dendritic spines. Spine outgrowth and maturation are dependent on actin polymerization-depolymerization dynamics. Pyronneau et al. found that loss of FMRP in mice increased the abundance and activity of the GTPase Rac1. Rac1 activated the kinases PAK and LIMK1, which inactivated cofilin, thus preventing actin depolymerization dynamics. A pharmacological inhibitor of PAK decreased the number of immature spines and improved sensory processing in FXS model mice, suggesting that targeting this pathway may be therapeutic in patients. Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene FMR1 on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition. We showed that aberrantly increased activity of the Rho GTPase Rac1 inhibited the actin-depolymerizing factor cofilin, a major determinant of dendritic spine structure, and caused disease-associated spine abnormalities in the somatosensory cortex of FXS model mice. Increased cofilin phosphorylation and actin polymerization coincided with abnormal dendritic spines and impaired synaptic maturation. Viral delivery of a constitutively active cofilin mutant (cofilinS3A) into the somatosensory cortex of Fmr1-deficient mice rescued the immature dendritic spine phenotype and increased spine density. Inhibition of the Rac1 effector PAK1 with a small-molecule inhibitor rescued cofilin signaling in FXS mice, indicating a causal relationship between PAK1 and cofilin signaling. PAK1 inhibition rescued synaptic signaling (specifically the synaptic ratio of NMDA/AMPA in layer V pyramidal neurons) and improved sensory processing in FXS mice. These findings suggest a causal relationship between increased Rac1-cofilin signaling, synaptic defects, and impaired sensory processing in FXS and uncover a previously unappreciated role for impaired Rac1-cofilin signaling in the aberrant spine morphology and spine density associated with FXS.

Collaboration


Dive into the Jee Yeon Hwang's collaboration.

Top Co-Authors

Avatar

R. Suzanne Zukin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Pontarelli

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kelly A. Aromolaran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Gertner

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Naoki Kaneko

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Adrianna Latuszek-Barrantes

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alexander Pyronneau

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne M. Etgen

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge