Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung-Min Noh is active.

Publication


Featured researches published by Kyung-Min Noh.


Cell | 2010

Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions

Aaron D. Goldberg; Laura A. Banaszynski; Kyung-Min Noh; Peter W. Lewis; Simon J. Elsaesser; Sonja C. Stadler; Scott Dewell; Martin Law; Xingyi Guo; Xuan Li; Duancheng Wen; Ariane Chapgier; Russell DeKelver; Jeffrey C. Miller; Ya Li Lee; Elizabeth A. Boydston; Michael C. Holmes; Philip D. Gregory; John M. Greally; Shahin Rafii; Chingwen Yang; Peter J. Scambler; David Garrick; Richard J. Gibbons; Douglas R. Higgs; Ileana M. Cristea; Fyodor D. Urnov; Deyou Zheng; C. David Allis

The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres

Peter W. Lewis; Simon J. Elsaesser; Kyung-Min Noh; Sonja C. Stadler; C. David Allis

The histone variant H3.3 is implicated in the formation and maintenance of specialized chromatin structure in metazoan cells. H3.3-containing nucleosomes are assembled in a replication-independent manner by means of dedicated chaperone proteins. We previously identified the death domain associated protein (Daxx) and the α-thalassemia X-linked mental retardation protein (ATRX) as H3.3-associated proteins. Here, we report that the highly conserved N terminus of Daxx interacts directly with variant-specific residues in the H3.3 core. Recombinant Daxx assembles H3.3/H4 tetramers on DNA templates, and the ATRX–Daxx complex catalyzes the deposition and remodeling of H3.3-containing nucleosomes. We find that the ATRX–Daxx complex is bound to telomeric chromatin, and that both components of this complex are required for H3.3 deposition at telomeres in murine embryonic stem cells (ESCs). These data demonstrate that Daxx functions as an H3.3-specific chaperone and facilitates the deposition of H3.3 at heterochromatin loci in the context of the ATRX–Daxx complex.


Nature Reviews Genetics | 2014

Every amino acid matters: essential contributions of histone variants to mammalian development and disease

Ian Maze; Kyung-Min Noh; Alexey A. Soshnev; C. David Allis

Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease.


The Journal of Neuroscience | 2006

Activity Bidirectionally Regulates AMPA Receptor mRNA Abundance in Dendrites of Hippocampal Neurons

Sonja Y. Grooms; Kyung-Min Noh; Roodland Regis; Gary J. Bassell; Monique K. Bryan; Reed C. Carroll; R. Suzanne Zukin

Activity-dependent regulation of synaptic AMPA receptor (AMPAR) number is critical to NMDA receptor (NMDAR)-dependent synaptic plasticity. Using quantitative high-resolution in situ hybridization, we show that mRNAs encoding the AMPA-type glutamate receptor subunits (GluRs) 1 and 2 are localized to dendrites of hippocampal neurons and are regulated by paradigms that alter synaptic efficacy. A substantial fraction of synaptic sites contain AMPAR mRNA, consistent with strategic positioning and availability for “on-site” protein synthesis. NMDAR activation depletes dendritic levels of AMPAR mRNAs. The decrease in mRNA occurs via rise in intracellular Ca2+, activation of extracellular signal-regulated kinase/mitogen-activated protein kinase signaling, and transcriptional arrest at the level of the nucleus. The decrease in mRNA is accompanied by a long-lasting reduction in synaptic AMPAR number, consistent with reduced synaptic efficacy. In contrast, group I metabotropic GluR signaling promotes microtubule-based trafficking of existing AMPAR mRNAs from the soma to dendrites. Bidirectional regulation of dendritic mRNA abundance represents a potentially powerful means to effect long-lasting changes in synaptic strength.


Nature | 2015

Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells

Simon J. Elsässer; Kyung-Min Noh; Nichole Diaz; C. David Allis; Laura A. Banaszynski

Transposable elements comprise roughly 40% of mammalian genomes. They have an active role in genetic variation, adaptation and evolution through the duplication or deletion of genes or their regulatory elements, and transposable elements themselves can act as alternative promoters for nearby genes, resulting in non-canonical regulation of transcription. However, transposable element activity can lead to detrimental genome instability, and hosts have evolved mechanisms to silence transposable element mobility appropriately. Recent studies have demonstrated that a subset of transposable elements, endogenous retroviral elements (ERVs) containing long terminal repeats (LTRs), are silenced through trimethylation of histone H3 on lysine 9 (H3K9me3) by ESET (also known as SETDB1 or KMT1E) and a co-repressor complex containing KRAB-associated protein 1 (KAP1; also known as TRIM28) in mouse embryonic stem cells. Here we show that the replacement histone variant H3.3 is enriched at class I and class II ERVs, notably those of the early transposon (ETn)/MusD family and intracisternal A-type particles (IAPs). Deposition at a subset of these elements is dependent upon the H3.3 chaperone complex containing α-thalassaemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX). We demonstrate that recruitment of DAXX, H3.3 and KAP1 to ERVs is co-dependent and occurs upstream of ESET, linking H3.3 to ERV-associated H3K9me3. Importantly, H3K9me3 is reduced at ERVs upon H3.3 deletion, resulting in derepression and dysregulation of adjacent, endogenous genes, along with increased retrotransposition of IAPs. Our study identifies a unique heterochromatin state marked by the presence of both H3.3 and H3K9me3, and establishes an important role for H3.3 in control of ERV retrotransposition in embryonic stem cells.


Journal of Neurochemistry | 2001

Mediation by Membrane Protein Kinase C of Zinc-Induced Oxidative Neuronal Injury in Mouse Cortical Cultures

Kyung-Min Noh; Yang Hee Kim; Jae-Young Koh

Abstract: Transsynaptic movement of endogenous zinc may play a key role in selective neuronal death after brain ischemia and prolonged seizures. As to the mechanism, we have reported recently that zinc‐induced neuronal death occurs mainly by oxidative stress in cortical cultures. Here we present evidence supporting the idea that activation of membrane protein kinase C (PKC) in neurons is likely to play a key role in zinc‐induced oxidative neuronal injury. Exposure of cortical cultures to 300 μM zinc for 15 min induced increases in the activity, without changing the amount, of membrane PKC to two‐ to threefold of control values, followed by neuronal death over the next day. Addition of a zinc chelator, Ca‐EDTA, or PKC inhibitors with zinc completely abolished the zinc‐induced increase in the membrane PKC activity. Indicating the participation of PKC in zinc‐induced oxidative stress and neuronal death, the selective PKC inhibitor GF109203X attenuated both. Furthermore, as in zinc‐induced neuronal death, activation of PKC with phorbol esters induced free radical generation and neuronal death, which were blocked by GF109203X or an antioxidant, Trolox. The present results support the idea that zinc influx activates PKC in the membrane, which contributes to free radical generation and neuronal death. As an increasing body of evidence suggests that zinc neurotoxicity is an important mechanism of pathological neuronal death, timely prevention of PKC activation after acute brain insult may prove useful in ameliorating this type of neuronal death.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ischemic insults promote epigenetic reprogramming of μ opioid receptor expression in hippocampal neurons

Luigi Formisano; Kyung-Min Noh; Takahiro Miyawaki; Toshihiro Mashiko; R. Suzanne Zukin

Transient global ischemia is a neuronal insult that induces delayed, selective death of hippocampal CA1 pyramidal neurons. A mechanism underlying ischemia-induced cell death is activation of the gene silencing transcription factor REST (repressor element-1 silencing transcription factor)/NRSF (neuron-restrictive silencing factor) and REST-dependent suppression of the AMPA receptor subunit GluR2 in CA1 neurons destined to die. Here we show that REST regulates an additional gene target, OPRM1 (μ opioid receptor 1 or MOR-1). MORs are abundantly expressed by basket cells and other inhibitory interneurons of CA1. Global ischemia induces a marked decrease in MOR-1 mRNA and protein expression that is specific to the selectively vulnerable area CA1, as assessed by quantitative real-time RT-PCR, Western blotting, and ChIP. We further show that OPRM1 gene silencing is REST-dependent and occurs via epigenetic modifications. Ischemia promotes deacetylation of core histone proteins H3 and H4 and dimethylation of histone H3 at lysine-9 (H3-K9) over the MOR-1 promoter, an signature of epigenetic gene silencing. Acute knockdown of MOR-1 gene expression by administration of antisense oligodeoxynucleotides to hippocampal slices in vitro or injection of the MOR antagonist naloxone to rats in vivo affords protection against ischemia-induced death of CA1 pyramidal neurons. These findings implicate MORs in ischemia-induced death of CA1 pyramidal neurons and document epigenetic remodeling of expression of OPRM1 in CA1 inhibitory interneurons.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death

Kyung-Min Noh; Jee Yeon Hwang; Antonia Follenzi; Rodoniki Athanasiadou; Takahiro Miyawaki; John M. Greally; R. Suzanne Zukin

Dysregulation of the transcriptional repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor is important in a broad range of diseases, including cancer, diabetes, and heart disease. The role of REST-dependent epigenetic modifications in neurodegeneration is less clear. Here, we show that neuronal insults trigger activation of REST and CoREST in a clinically relevant model of ischemic stroke and that REST binds a subset of “transcriptionally responsive” genes (gria2, grin1, chrnb2, nefh, nfκb2, trpv1, chrm4, and syt6), of which the AMPA receptor subunit GluA2 is a top hit. Genes with enriched REST exhibited decreased mRNA and protein. We further show that REST assembles with CoREST, mSin3A, histone deacetylases 1 and 2, histone methyl-transferase G9a, and methyl CpG binding protein 2 at the promoters of target genes, where it orchestrates epigenetic remodeling and gene silencing. RNAi-mediated depletion of REST or administration of dominant-negative REST delivered directly into the hippocampus in vivo prevents epigenetic modifications, restores gene expression, and rescues hippocampal neurons. These findings document a causal role for REST-dependent epigenetic remodeling in the neurodegeneration associated with ischemic stroke and identify unique therapeutic targets for the amelioration of hippocampal injury and cognitive deficits.


Neurobiology of Disease | 2000

A Novel Neuroprotective Mechanism of Riluzole: Direct Inhibition of Protein Kinase C

Kyung-Min Noh; Jee Yeon Hwang; Hyung Cheul Shin; Jae Young Koh

In addition to its antiexcitotoxic action, the anti-amyotrophic lateral sclerosis (ALS) neuroprotectant riluzole protects against nonexcitotoxic oxidative neuronal injury. In light of evidence that protein kinase C (PKC) mediates oxidative stress in cortical culture, we examined the possibility that riluzoles antioxidative neuroprotection involves PKC inhibition. Riluzole (30 microM) blocked phorbol 12-myristate 13-acetate (PMA)-induced increases in membrane PKC activity in cultured cortical cells. Suggesting a direct action, riluzole also inhibited the activity of purified PKC. Consistently, both PKC depletion and oxidative neuronal death induced by PMA were markedly attenuated by riluzole. The site of action of riluzole on PKC was not likely the diacylglycerol binding site but the catalytic domain, since riluzole did not alter radiolabeled phorbol-12,13-dibutyrate binding, but inhibited PKM, the catalytic domain of PKC. However, increasing ATP concentrations did not alter the inhibition of PKC by riluzole, making it unlikely that riluzole is a competitive inhibitor of ATP binding at PKM. Present results have demonstrated that riluzole directly inhibits PKC, which action may contribute to its antioxidative neuroprotective effects. In addition, it appears possible that PKC inhibition may be able to explain some of its well-known channel inhibitory and neuroprotective effects. Combined with findings that PKC activity is increased in ALS, the present results suggest that PKC may be a potential therapeutic target in ALS.


Neuropsychopharmacology | 2013

Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity

Ian Maze; Kyung-Min Noh; C. David Allis

Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.

Collaboration


Dive into the Kyung-Min Noh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Suzanne Zukin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Maze

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimitry Ofengeim

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jee Yeon Hwang

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge