Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Biernaskie is active.

Publication


Featured researches published by Jeff Biernaskie.


Nature Cell Biology | 2004

A dermal niche for multipotent adult skin-derived precursor cells

Karl J.L. Fernandes; Ian Mckenzie; Pleasantine Mill; Kristen M. Smith; Mahnaz Akhavan; Fanie Barnabé-Heider; Jeff Biernaskie; Adrienne Junek; Nao R. Kobayashi; Jean G. Toma; David R. Kaplan; Patricia A. Labosky; Victor F. Rafuse; Chi-chung Hui; Freda D. Miller

A fundamental question in stem cell research is whether cultured multipotent adult stem cells represent endogenous multipotent precursor cells. Here we address this question, focusing on SKPs, a cultured adult stem cell from the dermis that generates both neural and mesodermal progeny. We show that SKPs derive from endogenous adult dermal precursors that exhibit properties similar to embryonic neural-crest stem cells. We demonstrate that these endogenous SKPs can first be isolated from skin during embryogenesis and that they persist into adulthood, with a niche in the papillae of hair and whisker follicles. Furthermore, lineage analysis indicates that both hair and whisker follicle dermal papillae contain neural-crest-derived cells, and that SKPs from the whisker pad are of neural-crest origin. We propose that SKPs represent an endogenous embryonic precursor cell that arises in peripheral tissues such as skin during development and maintains multipotency into adulthood.


The Journal of Neuroscience | 2004

Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury

Jeff Biernaskie; Garry Chernenko; Dale Corbett

To maximize the effectiveness of rehabilitative therapies after stroke, it is critical to determine when the brain is most responsive (i.e., plastic) to sensorimotor experience after injury and to focus such efforts within this period. Here, we compared the efficacy of 5 weeks of enriched rehabilitation (ER) initiated at 5 d (ER5), ER14, or ER30 after focal ischemia, as judged by functional outcome and neuromorphological change. ER5 provided marked improvement in skilled forelimb reaching ability and ladder-rung- and narrow-beam-walking tasks and attenuated the stroke-induced reliance on the unaffected forepaw for postural support. ER14 provided improvement to a somewhat lesser extent, whereas recovery was diminished after ER30 such that motor function did not differ from ischemic animals exposed to social housing. To examine potential neural substrates of the improved function, we examined dendritic morphology in the undamaged motor cortex because our previous work (Biernaskie and Corbett, 2001) suggested that recovery was associated with enhanced dendritic growth in this region. ER5 increased the number of branches and complexity of layer V neurons compared with both social housing and control animals. Dendritic arbor after ER14 (although increased) and ER30 did not differ from those exposed to social housing. These data suggest that the poststroke brain displays heightened sensitivity to rehabilitative experience early after the stroke but declines with time. These findings have important implications for rehabilitation of stroke patients, many of whom experience considerable delays before therapy is initiated.


The Journal of Neuroscience | 2007

Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury

Jeff Biernaskie; Joseph S. Sparling; Jie Liu; Casey Shannon; Jason R. Plemel; Yuanyun Xie; Freda D. Miller; Wolfram Tetzlaff

Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genetically tagged murine SKPs and either transplanted them directly into the contused rat spinal cord or differentiated them into Schwann cells (SCs), and performed similar transplantations with the isolated, expanded SKP-derived SCs. Neuroanatomical analysis of these transplants 12 weeks after transplantation revealed that both cell types survived well within the injured spinal cord, reduced the size of the contusion cavity, myelinated endogenous host axons, and recruited endogenous SCs into the injured cord. However, SKP-derived SCs also provided a bridge across the lesion site, increased the size of the spared tissue rim, myelinated spared axons within the tissue rim, reduced reactive gliosis, and provided an environment that was highly conducive to axonal growth. Importantly, SKP-derived SCs provided enhanced locomotor recovery relative to both SKPs and forebrain subventricular zone neurospheres, and had no impact on mechanical or heat sensitivity thresholds. Thus, SKP-derived SCs provide an accessible, potentially autologous source of cells for transplantation into and treatment of the injured spinal cord.


Developmental Cell | 2014

Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type

Waleed Rahmani; Sepideh Abbasi; Andrew Hagner; Eko Raharjo; Ranjan Kumar; Akitsu Hotta; Scott T. Magness; Daniel Metzger; Jeff Biernaskie

The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging.


The Journal of Neuroscience | 2015

Schwann Cells Generated from Neonatal Skin-Derived Precursors or Neonatal Peripheral Nerve Improve Functional Recovery after Acute Transplantation into the Partially Injured Cervical Spinal Cord of the Rat

Joseph S. Sparling; Frédéric Bretzner; Jeff Biernaskie; Peggy Assinck; Yuan Jiang; Hiroki Arisato; Ward T. Plunet; Jaimie F. Borisoff; Jie Liu; Freda D. Miller; Wolfram Tetzlaff

The transplantation of Schwann cells (SCs) holds considerable promise as a therapy for spinal cord injury, but the optimal source of these cells and the best timing for intervention remains debatable. Previously, we demonstrated that delayed transplantation of SCs generated from neonatal mouse skin-derived precursors (SKP-SCs) promoted repair and functional recovery in rats with thoracic contusions. Here, we conducted two experiments using neonatal rat cells and an incomplete cervical injury model to examine the efficacy of acute SKP-SC transplantation versus media control (Experiment 1) and versus nerve-derived SC or dermal fibroblast (Fibro) transplantation (Experiment 2). Despite limited graft survival, by 10 weeks after injury, rats that received SCs from either source showed improved functional recovery compared with media- or fibroblast-treated animals. Compared with media treatment, SKP-SC-transplanted rats showed enhanced rubrospinal tract (RST) sparing/plasticity in the gray matter (GM) rostral to injury, particularly in the absence of immunosuppression. The functional benefits of SC transplantations over fibroblast treatment correlated with the enhanced preservation of host tissue, reduced RST atrophy, and/or increased RST sparing/plasticity in the GM. In summary, our results indicate that: (1) early transplantation of neonatal SCs generated from skin or nerve promotes repair and functional recovery after incomplete cervical crush injury; (2) either of these cell types is preferable to Fibros for these purposes; and (3) age-matched SCs from these two sources do not differ in terms of their reparative effects or functional efficacy after transplantation into the injured cervical spinal cord.


Biomaterials | 2016

Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation.

Fraz Anjum; Philipp S. Lienemann; Stéphanie Metzger; Jeff Biernaskie; Michael S. Kallos; Martin Ehrbar

We describe an enzymatically formed chondroitin sulfate (CS) and poly(ethylene glycol) (PEG) based hybrid hydrogel system, which by tuning the architecture and composition of modular building blocks, allows the application-specific tailoring of growth factor delivery and cellular responses. CS, a negatively charged sulfate-rich glycosaminoglycan of the extracellular matrix (ECM), known for its growth factor binding and stem cell regulatory functions, is used as a starting material for the engineering of this biomimetic materials platform. The functionalization of CS with transglutaminase factor XIII specific substrate sequences is utilized to allow cross-linking of CS with previously described fibrin-mimetic TG-PEG hydrogel precursors. We show that the hydrogel network properties can be tuned by varying the degree of functionalization of CS as well as the ratio and concentrations of PEG and CS precursors. Taking advantage of TG-PEG hydrogel, compatible tagged bio-functional building blocks, including RGD peptides or matrix metalloproteinase sensitive domains, can be incorporated on demand allowing the three-dimensional culture and expansion of human bone marrow mesenchymal stem cells (BM-MSCs). The binding of bone morphogenetic protein-2 (BMP-2) in a CS concentration dependent manner and the BMP-2 release mediated osteogenic differentiation of BM-MSCs indicate the potential of CS-PEG hybrid hydrogels to promote regeneration of bone tissue. Their modular design allows facile incorporation of additional signaling elements, rendering CS-PEG hydrogels a highly flexible platform with potential for multiple biomedical applications.


Journal of Investigative Dermatology | 2010

Human Hair Follicles: “Bulging” with Neural Crest–Like Stem Cells

Jeff Biernaskie

Several studies have reported the existence of precursor cells residing within various adult tissues that appear to either retain or recapitulate features of neural crest stem cells (NCSCs). In rodents, unique populations of both epidermal and dermal cells, resident within hair follicles, exhibit such characteristics, although the existence of equivalent NCSC-like cells in human tissues has remained uncertain. In this issue, Yu et al. show that NCSC-like cells also reside within the bulge region of adult human hair follicles.


European Journal of Neuroscience | 2016

The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy.

Jo Anne Stratton; Prajay Shah; Ranjan Kumar; Morgan G. Stykel; Yuval Shapira; Joey Grochmal; Gui Fang Guo; Jeff Biernaskie; Rajiv Midha

Skin‐derived precursor Schwann cell (SKPSC) therapy has been identified as a potentially beneficial treatment for peripheral nerve injuries. One hypothesised mechanism by which SKPSCs enhance recovery is via the modulation of macrophages. In the present study, we investigated the immunomodulatory properties of adult rat SKPSCs, and demonstrated that these cells expressed a battery of cytokines, including interferon‐γ (IFN‐γ), interleukin (IL)‐1β, and, most abundantly, IL‐6. Whereas macrophages exposed to depleted or fibroblast‐conditioned medium secreted minimal amounts of tumor necrosis factor‐α (TNF‐α), in the presence of SKPSC‐conditioned medium, macrophages secreted > 500 pg/mL TNF‐α. Following the transplantation of SKPSCs into injured rat sciatic nerves, we observed an SKPSC density‐dependent increase in the number of macrophages (Pearsons r = 0.66) and an SKPSC density‐dependent decrease in myelin debris (Pearsons r = –0.68). To determine the effect of IL‐6 in a proinflammatory context, macrophage cultures were primed with either lipopolysaccharide (LPS)/IFN‐γ/IL‐1β or LPS/IFN‐γ/IL‐1β + IL‐6, and this showed a 212% and 301% increase in the number of inducible nitric oxide synthase (iNOS)‐positive proinflammatory macrophages respectively. In contrast to neurons exposed to conditioned medium from unprimed macrophages, neurons treated with conditioned medium from proinflammatory‐primed macrophages showed a 13–26% reduction in neurite outgrowth. Anti‐IL‐6 antibody combined with SKPSC transplant therapy following nerve injury did not alter macrophage numbers or debris clearance, but instead reduced iNOS expression as compared with SKPSC + IgG‐treated rats. SKPSC + anti‐IL‐6 treatment also resulted in a two‐fold increase in gastrocnemius compound muscle action potential amplitudes as compared with SKPSC + IgG treatment. Understanding the mechanisms underlying immunomodulatory aspects of SKPSC therapy and developing approaches to manipulate these responses are important for advancing Schwann cell‐based therapies.


The Journal of Neuroscience | 2017

Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury

Peggy Assinck; Greg J. Duncan; Jason R. Plemel; Michael J. Lee; Jo Anne Stratton; Sohrab B. Manesh; Jie Liu; Leanne M. Ramer; Shin H. Kang; Dwight E. Bergles; Jeff Biernaskie; Wolfram Tetzlaff

Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease. SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.


Burns | 2014

Patient experiences living with split thickness skin grafts.

L.N. Burnett; Eloise Carr; D. Tapp; S. Raffin Bouchal; J.D. Horch; Jeff Biernaskie; Vincent Gabriel

The standard of care for deep burns is autologous split thickness skin grafting. Although adequate to resurface a deep wound, the resulting skin is chronically abnormal. The purpose of this study was to describe the experience of patients with split thickness skin grafts to help guide future investigations related to skin regeneration. In this study, an interpretive description qualitative methodology was employed. Subjects participated in a two-part single patient interview that was recorded and transcribed. A nurse with experience in clinical burn care coded and interpreted the data. Participants were recruited through presentation to a university based outpatient burn clinic for follow up from autologous split thickness skin grafting. Eight male patients and four female patients 20-62 years old ranging 2-29 months post-skin grafting were enrolled in the study. The most significant concerns voiced by patients were identified and organized into five themes: (1) a new normal, (2) split thickness skin graft symptoms, (3) appearance of new skin, (4) coping, and (5) participation in future clinical trials. Participants reported that the abnormalities related to their split thickness skin grafts were significant enough that they would be willing to participate in a future clinical trial investigating new cell-based therapies.

Collaboration


Dive into the Jeff Biernaskie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge