Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff H. Chang is active.

Publication


Featured researches published by Jeff H. Chang.


Science | 1996

Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato

Steven R. Scofield; Christian M. Tobias; John P. Rathjen; Jeff H. Chang; Daniel T. Lavelle; Richard W. Michelmore; Brian J. Staskawicz

Transient expression of the Pseudomonas syringae avirulence gene avrPto in plant cells resulted in a Pto-dependent necrosis. The AvrPto avirulence protein was observed to interact directly with the Pto resistance protein in the yeast two-hybrid system. Mutations in the Pto and avrPto genes which reduce in vivo activity had parallel effects on association in the two-hybrid assay. These data suggest that during infection the pathogen delivers AvrPto into the plant host cell and that resistance is specified by direct interaction of Pto with AvrPto.


PLOS Pathogens | 2011

Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

David A. Baltrus; Marc T. Nishimura; Artur Romanchuk; Jeff H. Chang; M. Shahid Mukhtar; Karen Cherkis; Jeff Roach; Sarah R. Grant; Corbin D. Jones; Jeffery L. Dangl

Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.


The EMBO Journal | 1999

Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto.

John P. Rathjen; Jeff H. Chang; Brian J. Staskawicz; Richard W. Michelmore

Resistance in tomato to Pseudomonas syringae pv tomato (avrPto) is conferred by the gene Pto in a gene‐for‐gene relationship. A hypersensitive disease resistance response (HR) is elicited when Pto and avrPto are expressed experimentally within the same plant cell. The kinase capability of Pto was required for AvrPto‐dependent HR induction. Systematic mutagenesis of the activation segment of Pto kinase confirmed the homologous P+1 loop as an AvrPto‐binding determinant. Specific amino acid substitutions in this region led to constitutive induction of HR upon expression in the plant cell in the absence of AvrPto. Constitutively active Pto mutants required kinase capability for activity, and were unable to interact with proteins previously shown to bind to wild‐type Pto. The constitutive gain‐of‐function phenotype was dependent on a functional Prf gene, demonstrating activation of the cognate disease resistance pathway and precluding a role for Prf upstream of Pto.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis

Kinya Nomura; Christy Mecey; Young Nam Lee; Lori Alice Imboden; Jeff H. Chang; Sheng Yang He

Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pathogen-associated molecular pattern-triggered immunity (PTI) is often suppressed by pathogen effectors delivered into the host cell. Plants can overcome pathogen suppression of PTI and reestablish pathogen resistance through effector-triggered immunity (ETI). An unanswered question is how plants might overcome pathogen-suppression of PTI during ETI. Findings described in this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection of Arabidopsis, a host ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, is destabilized by the pathogen effector HopM1 through the host 26S proteasome. In this study, we discovered that AtMIN7 is required for not only PTI, consistent with the notion that Pst DC3000 degrades AtMIN7 to suppress PTI, but also ETI. The AtMIN7 level in healthy plants is low, but increases posttranscriptionally in response to activation of PTI. Whereas DC3000 infection led to degradation of AtMIN7, activation of ETI by three different effectors, AvrRpt2, AvrPphB, and HopA1, in Col-0 plants blocks the ability of Pst DC3000 to destabilize AtMIN7. Further analyses of bacterial translocation of HopM1 and AtMIN7 stability in HopM1 transgenic plants show that ETI prevents HopM1-mediated degradation of AtMIN7 inside the plant cell. Both AtMIN7 and HopM1 are localized to the trans-Golgi network/early endosome, a subcellular compartment that is not previously known to be associated with bacterial pathogenesis in plants. Thus, blocking pathogen degradation of trans-Golgi network/early endosome-associated AtMIN7 is a critical part of the ETI mechanism to counter bacterial suppression of PTI.


Molecular Plant-microbe Interactions | 2000

avrPto Enhances Growth and Necrosis Caused by Pseudomonas syringae pv. tomato in Tomato Lines Lacking Either Pto or Prf

Jeff H. Chang; John P. Rathjen; Adriana Bernal; Brian J. Staskawicz; Richard W. Michelmore

AvrPto was introduced into three tomato genotypes with two biotic agents to study its role in compatible interactions. avrPto enhanced the capacity of the Pseudomonas syringae pv. tomato strain T1 to induce necrotic symptoms on tomato plants that lacked either Pto or Prf genes. The enhanced necrosis correlated with a small increase in bacterial growth. In planta expression of avrPto in isolation did not elicit necrosis in the absence of a functional Prf gene.


Current Opinion in Plant Biology | 2001

Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen.

Zachary L. Nimchuk; Laurence Rohmer; Jeff H. Chang; Jeffery L. Dangl

Cloning of plant disease resistance genes is now commonplace in model plants. Recent attention has turned to how the proteins that they encode function biochemically to recognize their cognate Avirulence protein and to initiate the disease-resistance response. In addition, attention has turned to how the Avirulence proteins of pathogens might alter susceptible hosts for the benefit of the pathogen, and what plant proteins might be required for that process.


PLOS Pathogens | 2013

The Plant Actin Cytoskeleton Responds to Signals from Microbe-Associated Molecular Patterns

Jessica L. Henty-Ridilla; Masaki Shimono; Jiejie Li; Jeff H. Chang; Brad Day; Christopher J. Staiger

Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI) and perturbations by effector proteins during effector-triggered susceptibility (ETS). We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.


Plant Journal | 2009

Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1.

William J. Thomas; Jeffrey A. Kimbrel; Jeff H. Chang

Many Gram-negative bacteria use a type III secretion system (T3SS) to establish associations with their hosts. The T3SS is a conduit for direct injection of type-III effector proteins into host cells, where they manipulate the host for the benefit of the infecting bacterium. For plant-associated pathogens, the variations in number and amino acid sequences of type-III effectors, as well as their functional redundancy, make studying type-III effectors challenging. To mitigate this challenge, we developed a stable delivery system for individual or defined sets of type-III effectors into plant cells. We used recombineering and Tn5-mediated transposition to clone and stably integrate, respectively, the complete hrp/hrc region from Pseudomonas syringae pv. syringae 61 into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. We describe our development of Effector-to-Host Analyzer (EtHAn), and demonstrate its utility for studying effectors for their in planta functions.


Nature | 2016

Bacteria establish an aqueous living space in plants crucial for virulence

Xiu Fang Xin; Kinya Nomura; Kyaw Aung; André C. Velásquez; Jian Yao; Freddy Boutrot; Jeff H. Chang; Cyril Zipfel; Sheng Yang He

High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere–bacterial interactions.


PLOS ONE | 2011

GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression Differences

Jason S. Cumbie; Jeffrey A. Kimbrel; Yanming Di; Daniel W. Schafer; Larry J. Wilhelm; Samuel E. Fox; Christopher M. Sullivan; Aron D. Curzon; James C. Carrington; Todd C. Mockler; Jeff H. Chang

GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.

Collaboration


Dive into the Jeff H. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffery L. Dangl

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge