Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Liu is active.

Publication


Featured researches published by Jeff Liu.


PLOS Genetics | 2012

WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

Hou-Feng Zheng; Jon H Tobias; Emma L. Duncan; David Evans; Joel Eriksson; Lavinia Paternoster; Laura M. Yerges-Armstrong; Terho Lehtimäki; Ulrica Bergström; Mika Kähönen; Paul Leo; Olli T. Raitakari; Marika Laaksonen; Geoffrey C. Nicholson; Jorma Viikari; Martin Ladouceur; Leo-Pekka Lyytikäinen; Carolina Medina-Gomez; Fernando Rivadeneira; Richard L. Prince; Harri Sievänen; William D. Leslie; Dan Mellström; John A. Eisman; Sofia Movérare-Skrtic; David Goltzman; David A. Hanley; Graeme Jones; Beate St Pourcain; Yongjun Xiao

We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13<P<5.9×10−4) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture.


PLOS Genetics | 2012

Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus

Carolina Medina-Gomez; John P. Kemp; Karol Estrada; Joel Eriksson; Jeff Liu; Sjur Reppe; David Evans; Denise H. M. Heppe; Liesbeth Vandenput; Lizbeth Herrera; Susan M. Ring; Claudia J. Kruithof; Nicholas J. Timpson; M. Carola Zillikens; Ole Kristoffer Olstad; Hou-Feng Zheng; J. Brent Richards; Beate St Pourcain; Albert Hofman; Vincent W. V. Jaddoe; George Davey Smith; Mattias Lorentzon; Kaare M. Gautvik; André G. Uitterlinden; Robert Brommage; Claes Ohlsson; Jonathan H Tobias; Fernando Rivadeneira

To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1×10−11 observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ±500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6×10−31 and an effect size explaining between 0.6%–1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42×10−10) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9×10−16) and rs7801723 (P = 8.9×10−28), also mapping to C7orf58 (r2 = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.


Journal of Bone and Mineral Research | 2007

PTH stimulates bone formation in mice deficient in Lrp5

Urszula T. Iwaniec; Thomas J. Wronski; Jeff Liu; Mercedes Rivera; Rosemarie R Arzaga; Gwenn Hansen; Robert Brommage

Lrp5 deficiency decreases bone formation and results in low bone mass. This study evaluated the bone anabolic response to intermittent PTH treatment in Lrp5‐deficient mice. Our results indicate that Lrp5 is not essential for the stimulatory effect of PTH on cancellous and cortical bone formation.


Veterinary Pathology | 2012

Amelogenesis Imperfecta and Other Biomineralization Defects in Fam20a and Fam20c Null Mice

Peter Vogel; Gwenn Hansen; R. Read; R. B. Vance; M. Thiel; Jeff Liu; Thomas J. Wronski; Deon Smith; S. Jeter-Jones; Robert Brommage

The FAM20 family of secreted proteins consists of three members (FAM20A, FAM20B, and FAM20C) recently linked to developmental disorders suggesting roles for FAM20 proteins in modulating biomineralization processes. The authors report here findings in knockout mice having null mutations affecting each of the three FAM20 proteins. Both Fam20a and Fam20c null mice survived to adulthood and showed biomineralization defects. Fam20b –/– embryos showed severe stunting and increased mortality at E13.5, although early lethality precluded detailed investigations. Physiologic calcification or biomineralization of extracellular matrices is a normal process in the development and functioning of various tissues (eg, bones and teeth). The lesions that developed in teeth, bones, or blood vessels after functional deletion of either Fam20a or Fam20c support a significant role for their encoded proteins in modulating biomineralization processes. Severe amelogenesis imperfecta (AI) was present in both Fam20a and Fam20c null mice. In addition, Fam20a –/– mice developed disseminated calcifications of muscular arteries and intrapulmonary calcifications, similar to those of fetuin-A deficient mice, although they were normocalcemic and normophosphatemic, with normal dentin and bone. Fam20a gene expression was detected in ameloblasts, odontoblasts, and the parathyroid gland, with local and systemic effects suggesting both local and/or systemic effects for FAM20A. In contrast, Fam20c –/– mice lacked ectopic calcifications but were severely hypophosphatemic and developed notable lesions in both dentin and bone to accompany the AI. The bone and dentin lesions, plus the marked hypophosphatemia and elevated serum alkaline phosphatase and FGF23 levels, are indicative of autosomal recessive hypophosphatemic rickets/osteomalacia in Fam20c –/– mice.


Journal of Biological Chemistry | 2010

Ascorbate Synthesis Pathway: DUAL ROLE OF ASCORBATE IN BONE HOMEOSTASIS*

Kenneth H. Gabbay; Kurt M. Bohren; Roy Morello; Terry Bertin; Jeff Liu; Peter Vogel

Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of d-glucuronate to l-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) mice show that the two enzymes, GR and AR, provide ∼85 and ∼15% of l-gulonate, respectively. GRKO/ARKO double knock-out mice are unable to synthesize ASC (>95% ASC deficit) and develop scurvy. The GRKO mice (∼85% ASC deficit) develop and grow normally when fed regular mouse chow (ASC content = 0) but suffer severe osteopenia and spontaneous fractures with stresses that increase ASC requirements, such as pregnancy or castration. Castration greatly increases osteoclast numbers and activity in GRKO mice and promotes increased bone loss as compared with wild-type controls and additionally induces proliferation of immature dysplastic osteoblasts likely because of an ASC-sensitive block(s) in early differentiation. ASC and the antioxidants pycnogenol and resveratrol block osteoclast proliferation and bone loss, but only ASC feeding restores osteoblast differentiation and prevents their dysplastic proliferation. This is the first in vivo demonstration of two independent roles for ASC as an antioxidant suppressing osteoclast activity and number as well as a cofactor promoting osteoblast differentiation. Although humans have lost the ability to synthesize ASC, our mouse models suggest the mechanisms by which suboptimal ASC availability facilitates the development of osteoporosis, which has important implications for human osteoporosis.


Bone research | 2014

High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

Robert Brommage; Jeff Liu; Gwenn M. Hansen; Laura L. Kirkpatrick; David Potter; Arthur T. Sands; Brian Zambrowicz; David R. Powell; Peter Vogel

Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.


The New England Journal of Medicine | 2016

Cortical-Bone Fragility — Insights from sFRP4 Deficiency in Pyle’s Disease

Pelin Özlem Simsek Kiper; Hiroaki Saito; Francesca Gori; Sheila Unger; Eric Hesse; Kei Yamana; Riku Kiviranta; Nicolas Solban; Jeff Liu; Robert Brommage; Koray Boduroglu; Luisa Bonafé; Belinda Campos-Xavier; Esra Dikoglu; Richard Eastell; Fatma Gossiel; Keith Harshman; Gen Nishimura; Katta M. Girisha; Brian J. Stevenson; Hiroyuki Takita; Carlo Rivolta; Andrea Superti-Furga; Roland Baron

BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyles disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyles disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyles disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.).


Journal of Bone and Mineral Research | 2013

Targeted disruption of leucine‐rich repeat kinase 1 but not leucine‐rich repeat kinase 2 in mice causes severe osteopetrosis

Weirong Xing; Jeff Liu; Shaohong Cheng; Peter Vogel; Subburaman Mohan; Robert Brommage

To assess the roles of Lrrk1 and Lrrk2, we examined skeletal phenotypes in Lrrk1 and Lrrk2 knockout (KO) mice. Lrrk1 KO mice exhibit severe osteopetrosis caused by dysfunction of multinucleated osteoclasts, reduced bone resorption in endocortical and trabecular regions, and increased bone mineralization. Lrrk1 KO mice have lifelong accumulation of bone and respond normally to the anabolic actions of teriparatide treatment, but are resistant to ovariectomy‐induced bone boss. Precursors derived from Lrrk1 KO mice differentiate into multinucleated cells in response to macrophage colony‐stimulating factor (M‐CSF)/receptor activator of NF‐κB ligand (RANKL) treatment, but these cells fail to form peripheral sealing zones and ruffled borders, and fail to resorb bone. The phosphorylation of cellular Rous sarcoma oncogene (c‐Src) at Tyr‐527 is significantly elevated whereas at Tyr‐416 is decreased in Lrrk1‐deficient osteoclasts. The defective osteoclast function is partially rescued by overexpression of the constitutively active form of Y527F c‐Src. Immunoprecipitation assays in osteoclasts detected a physical interaction of Lrrk1 with C‐terminal Src kinase (Csk). Lrrk2 KO mice do not show obvious bone phenotypes. Precursors derived from Lrrk2 KO mice differentiate into functional multinucleated osteoclasts. Our finding of osteopetrosis in Lrrk1 KO mice provides convincing evidence that Lrrk1 plays a critical role in negative regulation of bone mass in part through modulating the c‐Src signaling pathway in mice.


Veterinary Pathology | 2015

Malformation of Incisor Teeth in Grem2-/- Mice

Peter Vogel; Jeff Liu; Kenneth A. Platt; Robert Read; M. Thiel; R. B. Vance; Robert Brommage

GREMLIN 2 (GREM2)—formerly, protein related to Dan and cerberus (PRDC)—is a potent antagonist of the bone morphogenetic proteins 2 and 4, but little else in known about its functions. We found that Grem2-/- mice developed small deformed mandibular and maxillary incisors, indicating that GREMLIN2 is required for normal tooth morphogenesis. Although DEXA scans suggested that bone mineral density might be increased in Grem2-/- mice, histology did not reveal any evident bone phenotype. Grem2-/- mice did not display any other notable phenotypes evaluated in a high-throughput screening process that encompassed a range of immunologic, metabolic, ophthalmic, and behavioral parameters. Our findings indicate that Grem2 can be added to the growing list of genes that affect tooth development in mice.


bonekey Reports | 2015

Adult Tph2 knockout mice without brain serotonin have moderately elevated spine trabecular bone but moderately low cortical bone thickness

Robert Brommage; Jeff Liu; Deon Doree; Wangsheng Yu; David R. Powell; Qi Melissa Yang

Disruption of serotonin synthesis in neurons and the periphery by knockout (KO) of mouse genes for tryptophan hydroxylases (peripheral Tph1 and neuronal Tph2) has been claimed to decrease (Tph2 KO) and increase (Tph1 KO) bone mass. In this report, adult male and female Tph2 KO mice were observed to have elevated spine trabecular bone. Female Tph2 KO mice have reduced midshaft femur cortical bone thickness. Bone mass was normal in male and female Tph1 KO mice examined as part of a Tph1/Tph2 double knockout (DKO) mouse cohort.

Collaboration


Dive into the Jeff Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Vogel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Joel Eriksson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Evans

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Potter

Lexicon Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge