Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Brommage is active.

Publication


Featured researches published by Robert Brommage.


Nature Medicine | 2011

Lrp5 functions in bone to regulate bone mass

Yajun Cui; Paul J. Niziolek; Bryan T. MacDonald; Cassandra R. Zylstra; Natalia Alenina; Dan R. Robinson; Zhendong Zhong; Susann Matthes; Christina M. Jacobsen; Ronald A. Conlon; Robert Brommage; Qingyun Liu; Faika Mseeh; David R. Powell; Qi M. Yang; Brian Zambrowicz; Han Gerrits; Jan A. Gossen; Xi He; Michael Bader; Bart O. Williams; Matthew L. Warman; Alexander G. Robling

The human skeleton is affected by mutations in low-density lipoprotein receptor-related protein 5 (LRP5). To understand how LRP5 influences bone properties, we generated mice with osteocyte-specific expression of inducible Lrp5 mutations that cause high and low bone mass phenotypes in humans. We found that bone properties in these mice were comparable to bone properties in mice with inherited mutations. We also induced an Lrp5 mutation in cells that form the appendicular skeleton but not in cells that form the axial skeleton; we observed that bone properties were altered in the limb but not in the spine. These data indicate that Lrp5 signaling functions locally, and they suggest that increasing LRP5 signaling in mature bone cells may be a strategy for treating human disorders associated with low bone mass, such as osteoporosis.


PLOS Genetics | 2012

WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

Hou-Feng Zheng; Jon H Tobias; Emma L. Duncan; David Evans; Joel Eriksson; Lavinia Paternoster; Laura M. Yerges-Armstrong; Terho Lehtimäki; Ulrica Bergström; Mika Kähönen; Paul Leo; Olli T. Raitakari; Marika Laaksonen; Geoffrey C. Nicholson; Jorma Viikari; Martin Ladouceur; Leo-Pekka Lyytikäinen; Carolina Medina-Gomez; Fernando Rivadeneira; Richard L. Prince; Harri Sievänen; William D. Leslie; Dan Mellström; John A. Eisman; Sofia Movérare-Skrtic; David Goltzman; David A. Hanley; Graeme Jones; Beate St Pourcain; Yongjun Xiao

We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13<P<5.9×10−4) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture.


Journal of Pharmacology and Experimental Therapeutics | 2008

Discovery and Characterization of Novel Tryptophan Hydroxylase Inhibitors That Selectively Inhibit Serotonin Synthesis in the Gastrointestinal Tract

Qingyun Liu; Qi Yang; Weimei Sun; Pete Vogel; William Heydorn; Xiang Qing Yu; Zhixiang Hu; Wangsheng Yu; Brandie Jonas; Randy Pineda; Valerie Calderon-Gay; Michael Germann; Emily O'Neill; Robert Brommage; Emily B. Cullinan; Ken A. Platt; Alan Wilson; Dave Powell; Arthur T. Sands; Brian Zambrowicz; Zhi Cai Shi

5-Hydroxytryptamine (serotonin) (5-HT) is a neurotransmitter with both central and peripheral functions, including the modulation of mood, appetite, hemodynamics, gastrointestinal (GI) sensation, secretion, and motility. Its synthesis is initiated by the enzyme tryptophan hydroxylase (TPH). Two isoforms of TPH have been discovered: TPH1, primarily expressed in the enterochromaffin cells of the gastrointestinal tract, and TPH2, expressed exclusively in neuronal cells. Mice lacking Tph1 contain little to no 5-HT in the blood and GI tract while maintaining normal levels in the brain. Because GI 5-HT is known to play important roles in normal and pathophysiology, we set out to discover and characterize novel compounds that selectively inhibit biosynthesis of GI 5-HT. Here, we describe two of a series of these inhibitors that are potent for TPH activity both in biochemical and cell-based assays. This class of compounds has unique properties with respect to pharmacokinetic and pharmacodynamic effects on GI serotonin production. Similar to the Tph1 knockout results, these TPH inhibitors have the ability to selectively reduce 5-HT levels in the murine GI tract without affecting brain 5-HT levels. In addition, administration of these compounds in a ferret model of chemotherapy-induced emesis caused modest reductions of intestinal serotonin levels and a decreased emetic response. These findings suggest that GI-specific TPH inhibitors may provide novel treatments for various gastrointestinal disorders associated with dysregulation of the GI serotonergic system, such as chemotherapy-induced emesis and irritable bowel syndrome.


PLOS Genetics | 2012

Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus

Carolina Medina-Gomez; John P. Kemp; Karol Estrada; Joel Eriksson; Jeff Liu; Sjur Reppe; David Evans; Denise H. M. Heppe; Liesbeth Vandenput; Lizbeth Herrera; Susan M. Ring; Claudia J. Kruithof; Nicholas J. Timpson; M. Carola Zillikens; Ole Kristoffer Olstad; Hou-Feng Zheng; J. Brent Richards; Beate St Pourcain; Albert Hofman; Vincent W. V. Jaddoe; George Davey Smith; Mattias Lorentzon; Kaare M. Gautvik; André G. Uitterlinden; Robert Brommage; Claes Ohlsson; Jonathan H Tobias; Fernando Rivadeneira

To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1×10−11 observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ±500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6×10−31 and an effect size explaining between 0.6%–1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42×10−10) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9×10−16) and rs7801723 (P = 8.9×10−28), also mapping to C7orf58 (r2 = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.


Journal of Bone and Mineral Research | 2007

PTH stimulates bone formation in mice deficient in Lrp5

Urszula T. Iwaniec; Thomas J. Wronski; Jeff Liu; Mercedes Rivera; Rosemarie R Arzaga; Gwenn Hansen; Robert Brommage

Lrp5 deficiency decreases bone formation and results in low bone mass. This study evaluated the bone anabolic response to intermittent PTH treatment in Lrp5‐deficient mice. Our results indicate that Lrp5 is not essential for the stimulatory effect of PTH on cancellous and cortical bone formation.


American Journal of Physiology-endocrinology and Metabolism | 2013

Improved glycemic control in mice lacking Sglt1 and Sglt2.

David R. Powell; Christopher M. DaCosta; Zhi-Ming Ding; Melinda Smith; Jennifer Greer; Deon Doree; Sabrina Jeter-Jones; Faika Mseeh; Lawrence A. Rodriguez; Angela L. Harris; Lindsey Buhring; Kenneth A. Platt; Peter Vogel; Robert Brommage; Arthur T. Sands; Brian Zambrowicz

Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.


Veterinary Pathology | 2012

Amelogenesis Imperfecta and Other Biomineralization Defects in Fam20a and Fam20c Null Mice

Peter Vogel; Gwenn Hansen; R. Read; R. B. Vance; M. Thiel; Jeff Liu; Thomas J. Wronski; Deon Smith; S. Jeter-Jones; Robert Brommage

The FAM20 family of secreted proteins consists of three members (FAM20A, FAM20B, and FAM20C) recently linked to developmental disorders suggesting roles for FAM20 proteins in modulating biomineralization processes. The authors report here findings in knockout mice having null mutations affecting each of the three FAM20 proteins. Both Fam20a and Fam20c null mice survived to adulthood and showed biomineralization defects. Fam20b –/– embryos showed severe stunting and increased mortality at E13.5, although early lethality precluded detailed investigations. Physiologic calcification or biomineralization of extracellular matrices is a normal process in the development and functioning of various tissues (eg, bones and teeth). The lesions that developed in teeth, bones, or blood vessels after functional deletion of either Fam20a or Fam20c support a significant role for their encoded proteins in modulating biomineralization processes. Severe amelogenesis imperfecta (AI) was present in both Fam20a and Fam20c null mice. In addition, Fam20a –/– mice developed disseminated calcifications of muscular arteries and intrapulmonary calcifications, similar to those of fetuin-A deficient mice, although they were normocalcemic and normophosphatemic, with normal dentin and bone. Fam20a gene expression was detected in ameloblasts, odontoblasts, and the parathyroid gland, with local and systemic effects suggesting both local and/or systemic effects for FAM20A. In contrast, Fam20c –/– mice lacked ectopic calcifications but were severely hypophosphatemic and developed notable lesions in both dentin and bone to accompany the AI. The bone and dentin lesions, plus the marked hypophosphatemia and elevated serum alkaline phosphatase and FGF23 levels, are indicative of autosomal recessive hypophosphatemic rickets/osteomalacia in Fam20c –/– mice.


Calcified Tissue International | 1995

Treatment of ovariectomized rats with the complex of rhIGF-I/IGFBP-3 Increases cortical and cancellous bone mass and improves structure in the femoral neck

Cedo M. Bagi; E. Deleon; Robert Brommage; David M. Rosen; Andreas Sommer

Sixteen-week-old Sprague-Dawley rats were ovariectomized (Ovx) or sham-operated and housed for 8 weeks to develop osteopenia prior to systemic administration of rhIGF-I (0.9 and 2.6 mg/kg) alone or the rhIGF-I/IGFBP-3 (0.9, 2.6 and 7.5 mg/kg) complex. After 8 weeks of treatment, proximal femurs were fixed, embedded, and cut through the midneck region. Structural and dynamic histomorphometric analyses were performed using standard techniques. Ovx increased endocortical resorption and modeling-dependent periosteal formation which resulted in decreased cortical bone area. Despite increased bone formation, trabecular number, thickness, and area were all reduced due to increased resorption. Structural changes following Ovx included fewer struts and nodes, a higher percentage of the simpler strut forms, and reduced endocorticotrabecular cnnnectivity. Eight weeks of treatment with rhIGF-I or rhIGF-I/IGFBP-3 promoted periosteal and endocortical bone formation and reduced the endocortical resorption induced by Ovx. Both rhIGF-I formulations stimulated bone formation on existing trabecular surfaces which increased trabecular thickness and area but not trabecular number. These treatments prevented further deterioration of the trabecular network caused by Ovx and preserved endocortico-trabecular connectivity. In summary, changes in the femoral neck following Ovx appear to be similar in rats and humans. The highest dose of rhIGF-I/IGFBP-3 used in this study showed the best results in promoting cortical and cancellous bone formation, and appears to be promising therapy for human osteopenias.


Obesity | 2008

High-throughput Screening of Mouse Knockout Lines Identifies True Lean and Obese Phenotypes

Robert Brommage; Urvi Desai; Jean-Pierre Revelli; Dorit B. Donoviel; Gregory K. Fontenot; Christopher M. DaCosta; Deon Smith; Laura L. Kirkpatrick; Kenneth J. Coker; Michael S. Donoviel; Derek E. Eberhart; Kathleen H. Holt; Mike Kelly; William Paradee; Anne V. Philips; Kenneth A. Platt; Adisak Suwanichkul; Gwenn Hansen; Arthur T. Sands; Brian Zambrowicz; David R. Powell

We developed a high‐throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual‐energy X‐ray absorptiometry (DXA) technology estimates body‐fat stores in eight KO and four wild‐type (WT) littermate chow‐fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body‐fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were ≥1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body‐fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body‐fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost‐effective screen appears capable of identifying genes with a role in regulating mammalian body fat.


Bone | 1995

Systemic administration of rhIGF-I or rhIGF-I/IGFBP-3 increases cortical bone and lean body mass in ovariectomized rats

Cedo M. Bagi; Estelita DeLeon; Robert Brommage; Steven W. Adams; David M. Rosen; Andreas Sommer

The purpose of this study was to compare dose-related effects on cortical bone and lean body mass following subcutaneous administration of rhIGF-I alone, or bound to an equimolar amount of rhIGFBP-3 to adult Ovx rats. At the age of 16 weeks, rats were ovariectomized or sham-operated and were allowed 8 weeks to develop osteopenia. After being divided into control (saline treated) or treatment groups, rats were injected daily during an 8-week period with 0.9 and 2.6 mg/kg of rhIGF-I, or with 0.9, 2.6, and 7.5 mg/kg of rhIGF-I bound to rhIGFBP-3. Fluorescent bone markers were given 9 and 2 days prior to necropsy. Body weights and lean body mass were monitored throughout the experiment. Cortical bone histomorphometry was performed on tibial cross-sections at the tibiofibular junction, and endochondral bone growth was measured at the distal femoral metaphysis. All rats treated with rhIGF-I or the rhIGF-I/IGFBP-3 complex had increased body weights, corresponding to a dose-dependent increase in lean body mass. Endochondral growth was slightly increased in all experimental groups, but was not dose-dependent. A dramatic increase in periosteal, modeling-dependent formation, coupled with decreased or unchanged resorption on the endocortical envelope resulted in a dose-dependent increase in cortical thickness and cross-sectional area in groups treated with the complex of rhIGF-I/IGFBP-3. This complex appeared to be more effective in promoting positive musculoskeletal changes than rhIGF-I alone.(ABSTRACT TRUNCATED AT 250 WORDS)

Collaboration


Dive into the Robert Brommage's collaboration.

Top Co-Authors

Avatar

Jeff Liu

Lexicon Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Rosen

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Peter Vogel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Joel Eriksson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Evans

Translational Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge