Jeff Small
Environment Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeff Small.
Environmental Science & Technology | 2011
Claudia E. Müller; Amila O. De Silva; Jeff Small; Mary Williamson; Xiaowa Wang; Adam Morris; Sharon Katz; Mary Gamberg; Derek C. G. Muir
The biomagnification behavior of perfluorinated carboxylates (PFCAs) and perfluorinated sulfonates (PFSAs) was studied in terrestrial food webs consisting of lichen and plants, caribou, and wolves from two remote northern areas in Canada. Six PFCAs with eight to thirteen carbons and perfluorooctane sulfonate (PFOS) were regularly detected in all species. Lowest concentrations were found for vegetation (0.02-0.26 ng/g wet weight (ww) sum (Σ) PFCAs and 0.002-0.038 ng/g ww PFOS). Wolf liver showed highest concentrations (10-18 ng/g ww ΣPFCAs and 1.4-1.7 ng/g ww PFOS) followed by caribou liver (6-10 ng/g ww ΣPFCAs and 0.7-2.2 ng/g ww PFOS). Biomagnification factors were highly tissue and substance specific. Therefore, individual whole body concentrations were calculated and used for biomagnification and trophic magnification assessment. Trophic magnification factors (TMF) were highest for PFCAs with nine to eleven carbons (TMF = 2.2-2.9) as well as PFOS (TMF = 2.3-2.6) and all but perfluorooctanoate were significantly biomagnified. The relationship of PFCA and PFSA TMFs with the chain length in the terrestrial food chain was similar to previous studies for Arctic marine mammal food web, but the absolute values of TMFs were around two times lower for this study than in the marine environment. This study demonstrates that challenges remain for applying the TMF approach to studies of biomagnification of PFCAs and PFSAs, especially for terrestrial animals.
Analytical and Bioanalytical Chemistry | 2010
Jennifer M. Keller; Antonia M. Calafat; Kayoko Kato; Mark E. Ellefson; William K. Reagen; Mark J. Strynar; Steven G. O’Connell; Craig M. Butt; Scott A. Mabury; Jeff Small; Derek C. G. Muir; Stefan D. Leigh; Michele M. Schantz
Standard Reference Materials (SRMs) are certified reference materials produced by the National Institute of Standards and Technology that are homogeneous materials well characterized with values for specified properties, such as environmental contaminant concentrations. They can be used to validate measurement methods and are critical in improving data quality. Disagreements in perfluorinated alkyl acid (PFAA) concentrations measured in environmental matrices during past interlaboratory comparisons emphasized the need for SRMs with values assigned for PFAAs. We performed a new interlaboratory comparison among six laboratories and provided, for the first time, value assignment of PFAAs in SRMs. Concentrations for perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and other PFAAs in two human serum and two human milk SRMs are reported. PFAA concentration measurements agreed for serum SRM 1957 using different analytical methods in six laboratories and for milk SRM 1954 in three laboratories. The interlaboratory relative standard deviation for PFOS in SRM 1957 was 7%, which is an improvement over past interlaboratory studies. Matrix interferences are discussed, as well as temporal trends and the percentage of branched vs. linear isomers. The concentrations in these SRMs are similar to the present-day average concentrations measured in human serum and milk, resulting in representative and useful control materials for PFAA human monitoring studies.
Chemosphere | 2011
S.H. Brandsma; Marla Smithwick; Keith R. Solomon; Jeff Small; Jacob de Boer; Derek C. G. Muir
The bioaccumulation of perfluorooctanesulfonamide (PFOSA) and two fluorotelomer alcohols (8:2 FTOH, 10:2 FTOH) by rainbow trout (Oncorhynchus mykiss) through dietary exposure, including depuration rates and metabolism was investigated. Concentrations in the spiked feed ranged from 10.9 μg g⁻¹ wet weight (wet wt) for PFOSA and 6.7 μg g⁻¹ wet wt for 8:2 FTOH to 5.0 μg g⁻¹ wet wt for 10:2 FTOH. Trout was fed at 1.5% body weight per day for 30 d and depuration was followed for up to 30 d following previously published dietary exposure protocols. Perfluorooctanesulfonate (PFOS) was the major perfluoroalkylsulfonate (PFSA) detected in fish following dietary exposure to PFOSA. Half-lives of PFOS and PFOSA were 16.9 ± 2.5 and 6.0 ± 0.4 d, respectively. A biomagnification factor (BMF) of 0.023 was calculated for PFOSA which indicates that dietary exposure to PFOSA does not result in biomagnification in the rainbow trout. PFOS had a BMF of 0.08. The fluorotelomer saturated acids (8:2 FTCA, 10:2 FTCA) and fluorotelomer unsaturated acids (8:2 FTUCA, 10:2 FTUCA) were the major products detected in rainbow trout following dietary exposure to 8:2 FTOH and 10:2 FTOH, respectively. Half-lives were 3.7 ± 0.4, 2.1 ± 0.5, 3.3, and 1.3 d for 10:2 FTCA, 10:2 FTUCA, 8:2 FTCA, and 8:2 FTUCA, respectively. Small amounts of perfluorooctanoate (PFOA) and perfluorodecanoate (PFDA) were also detected in the FTOH exposed fish.
Analytical and Bioanalytical Chemistry | 2012
Jessica L. Reiner; Steven G. O’Connell; Craig M. Butt; Scott A. Mabury; Jeff Small; Amila O. De Silva; Derek C. G. Muir; Amy D. Delinsky; Mark J. Strynar; Andrew B. Lindstrom; William K. Reagen; Michelle Malinsky; Sandra Schäfer; Christiaan Kwadijk; Michele M. Schantz; Jennifer M. Keller
AbstractStandard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs. FigureNIST SRMs 1946 Lake Superior Fish Tissue and 1947 Lake Michigan Fish Tissue
Environmental Toxicology and Chemistry | 2011
Perihan Binnur Kurt-Karakus; Camilla Teixeira; Jeff Small; Derek C. G. Muir; Terry F. Bidleman
Concentrations of current-use pesticides (CUPs) in water, zooplankton, precipitation, and air samples as well as stereoisomer fractions (SF; herbicidally active/total stereoisomers) of metolachlor were determined in water samples collected from 10 remote inland lakes in Ontario, Canada, between 2003 and 2005. The most frequently detected chemicals in lake water, precipitation, and air were α-endosulfan, atrazine, metolachlor, chlorpyrifos, chlorothalonil, and trifluralin, and α-endosulfan and chlorpyrifos were the chemicals detected frequently in zooplankton. Air concentrations of these CUPs were within the range of previously reported values for background sites in the Great Lakes basin. High detection frequency of CUPs in lake water and precipitation was attributed to high usage amounts, but some CUPs such as ametryn and disulfoton that were not used in Ontario were also detected. Mean bioaccumulation factors (wet wt) in zooplankton for endosulfan ranged from 160 to 590 and from 20 to 60 for chlorpyrifos. The overall median SF of metolachlor in precipitation samples (0.846) was similar to that of the commercial S-metolachlor (0.882). However, the median SF of metolachlor in water from all sampled inland lakes (0.806) was significantly lower compared with Ontario rivers (0.873) but higher compared with previous measurements in the Great Lakes (0.710). Lakes with smaller watershed areas showed higher SFs, supporting the hypothesis of stereoselective processing of deposited metolachlor within the watersheds, followed by transport to the lakes.
Environmental Science & Technology | 2012
Sarah B. Gewurtz; Amila O. De Silva; Sean Backus; Daryl J. McGoldrick; Michael J. Keir; Jeff Small; Lisa Melymuk; Derek C. G. Muir
Perfluoroalkyl contaminants (PFCs) were determined in Lake Ontario Lake Trout sampled annually between 1997 and 2008 in order to assess how current trends are responding to recent regulatory bans and voluntary phase-outs. We also combined our measurements with those of a previous study to provide an updated assessment of long-term trends. Concentrations of PFCs generally increased from the late 1970s until the mid-1980s to mid-1990s, after which concentrations either remained unchanged (perfluorooctane sulfonate (PFOS) and perfluorocarboxylates) or declined (perfluorodecanesulfonate (PFDS)). The temporal trends were assessed using three models, quadratic, exponential rise to maximum, and two-segment linear piecewise function, and then evaluated for best fit using Akaike Information Criteria. For PFOS and perfluorocarboxylates, the exponential rise to maximum function had the best fit. This is particularly interesting for PFOS as it suggests that although concentrations in Lake Ontario Lake Trout may have stopped increasing in response to voluntary phase-outs in 2000-2002, declines have yet to be observed. This may be due to continuing input of PFOS from products still in use and/or slow degradation of larger precursor molecules. A power analysis of PFOS suggested that 15 years of data with a within-year sample size of 10 is required to obtain sufficient power (80%) to detect a 5% decreasing trend. However, the length of the monitoring program had a greater influence on the ability to detect a trend compared to within-year sample size. This provides evidence that additional sampling years are required to detect a response to bans and phase-outs, given the variability in the fish data. The lack of observed declines of perfluorocarboxylate residues in fish may be expected as regulations for these compounds were only recently enacted. In contrast to the other compounds, the quadratic model had the best fit for PFDS. The results of this study emphasize the importance of long-term monitoring for assessing the effectiveness of bans and phase-outs on PFCs in the environment.
Environmental Pollution | 2010
Perihan Binnur Kurt-Karakus; Terry F. Bidleman; Derek C. G. Muir; John Struger; Ed Sverko; Steve Cagampan; Jeff Small; Liisa M. Jantunen
Mecoprop, dichlorprop and metolachlor concentrations and enantiomer signatures were determined in Ontario streams in 2006-2007 and compared to results from 2003 to 2004. Median concentrations of dichlorprop and metolachlor were not significantly different between the two campaigns, but mecoprop was higher in 2006-2007. Concentrations of mecoprop and dichlorprop in Lake Ontario surface water were 1-2 orders of magnitude lower than stream averages. Enantiomer fractions (EFs) > 0.5 of mecoprop in high-concentration stream water samples during 2006-2007 were related to replacement of racemic mecoprop by single (+) enantiomer mecoprop-P after 2004. EFs <0.5 in low-concentration samples suggested enantioselective degradation and/or interconversion. Metolachlor profiles were expressed as SF, the fraction of herbicidally active/(active + inactive) stereoisomers. Samples with higher concentrations of metolachlor had SFs similar to S-metolachlor which is enriched in the active stereoisomers. Low concentrations were associated with lower and more variable SFs, suggesting mixed input of racemic and S-metolachlor or stereoselective degradation.
Environmental Science & Technology | 2010
Perihan Binnur Kurt-Karakus; Derek C. G. Muir; Terry F. Bidleman; Jeff Small; Sean Backus; Alice Dove
Concentrations of atrazine and metolachlor and stereoisomer fractions (SF = herbicidally active/total stereoisomers) of metolachlor were determined in 101 surface water samples collected from the five Laurentian Great Lakes in 2005-2006. Geometric mean (GM) concentrations of atrazine ranged from 5.5 to 61 ng L(-1), decreasing from lakes Ontario approximately Michigan approximately Erie > Huron > Superior, while metolachlor concentrations ranged from 0.28 to 14 ng L(-1) and showed similar trends among the lakes. Median SFs ranged from 0.527 (Superior) to 0.844 (Erie) with an overall value of 0.708, and were significantly different among the Great Lakes (p < 0.05), except for Michigan vs Huron and Michigan vs Ontario. The SF in Erie was closest to that of the dominant product in use, S-metolachlor (SF = 0.880), while Superior showed an SF similar to that of racemic metolachlor (SF = 0.500). The median SFs in lakes Ontario, Huron and Erie were significantly lower than the median SF in Ontario stream samples collected in 2006-2007. The lower SFs in lakes suggest in-lake stereoselective processing of metolachlor or hold-up of older racemic metolachlor residues.
Analytical and Bioanalytical Chemistry | 2015
Jessica L. Reiner; Andrea C. Blaine; Christopher P. Higgins; Carin A. Huset; Thomas M. Jenkins; Christiaan Kwadijk; Cleston C. Lange; Derek C. G. Muir; William K. Reagen; Courtney D. Rich; Jeff Small; Mark J. Strynar; John W. Washington; Hoon Yoo; Jennifer M. Keller
The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, method validation, and measurement for contaminants that are now of concern. NIST and multiple groups have been measuring the mass fraction of a group of emerging contaminants, polyfluorinated substances (PFASs), in a variety of SRMs. Here we report levels determined in an interlaboratory comparison of up to 23 PFASs determined in five SRMs: sediment (SRMs 1941b and 1944), house dust (SRM 2585), soil (SRM 2586), and sludge (SRM 2781). Measurements presented show an array of PFASs, with perfluorooctane sulfonate being the most frequently detected. SRMs 1941b, 1944, and 2586 had relatively low concentrations of most PFASs measured while 23 PFASs were at detectable levels in SRM 2585 and most of the PFASs measured were at detectable levels in SRM 2781. The measurements made in this study were used to add values to the Certificates of Analysis for SRMs 2585 and 2781.
Science of The Total Environment | 2010
Jan Weber; Crispin J. Halsall; Derek C. G. Muir; Camilla Teixeira; Jeff Small; Keith R. Solomon; Mark H. Hermanson; Hayley Hung; Terry F. Bidleman