Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Subleski is active.

Publication


Featured researches published by Jeff Subleski.


Expert Opinion on Biological Therapy | 2007

Immunotherapy of Cancer by IL-12-based Cytokine Combinations

Jonathan M. Weiss; Jeff Subleski; Jon M Wigginton; Robert H. Wiltrout

Cancer is a multi-faceted disease comprising complex interactions between neoplastic and normal cells. Over the past decade, there has been considerable progress in defining the molecular, cellular and environmental contributions to the pathophysiology of tumor development. Despite these advances, the conventional treatment of patients still generally involves surgery, radiotherapy and/or chemotherapy, and the clinical outcome for many of these efforts remains unsatisfactory. Recent studies have highlighted the feasibility of using immunotherapeutic approaches that seek to enhance host immune responses to developing tumors. These strategies include immunomodulatory cytokines, with TNF-α, type I or type II IFNs, IL-2, IL-12, IL-15 and IL-18 being among the most potent inducers of anti-tumor activity in a variety of preclinical studies. More recently, some exciting new cytokines have been characterized, such as IL-21, IL-23, IL-27 and their immunomodulatory and antitumor effects in vitro and in vivo suggest that they may have considerable promise for future immunotherapy protocols. The promise of cytokine therapy does indeed derive from the identification of these novel cytokines but even more fundamentally, the field is greatly benefiting from the ever-expanding amount of preclinical data that convincingly demonstrate synergistic and/or novel biologic effects, which may be achieved through the use of several combinations of cytokines with complementary immune-stimulating capabilities. One cytokine in particular, IL-12, holds considerable promise by virtue of the fact that it plays a central role in regulating both innate and adaptive immune responses, can by itself induce potent anticancer effects, and synergizes with several other cytokines for increased immunoregulatory and antitumor activities. This review discusses the antitumor activity of IL-12, with a special emphasis on its ability to synergize with other cytokines for enhancement of immune effector cell populations and regulation of host–tumor cell interactions and the overall tumor microenvironment.


Journal of Immunology | 2003

Synergistic Anti-Tumor Responses After Administration of Agonistic Antibodies to CD40 and IL-2: Coordination of Dendritic and CD8+ Cell Responses

William J. Murphy; Lisbeth A. Welniak; Timothy C. Back; Julie A. Hixon; Jeff Subleski; Naoko Seki; Jon M. Wigginton; Susan E. Wilson; Bruce R. Blazar; Anatoli Malyguine; Thomas J. Sayers; Robert H. Wiltrout

In cancer, the coordinate engagement of professional APC and Ag-specific cell-mediated effector cells may be vital for the induction of effective antitumor responses. We speculated that the enhanced differentiation and function of dendritic cells through CD40 engagement combined with IL-2 administration to stimulate T cell expansion would act coordinately to enhance the adaptive immune response against cancer. In mice bearing orthotopic metastatic renal cell carcinoma, only the combination of an agonist Ab to CD40 and IL-2, but neither agent administered alone, induced complete regression of metastatic tumor and specific immunity to subsequent rechallenge in the majority of treated mice. The combination of anti-CD40 and IL-2 resulted in significant increases in dendritic cell and CD8+ T cell number in advanced tumor-bearing mice compared with either agent administered singly. The antitumor effects of anti-CD40 and IL-2 were found to be dependent on CD8+ T cells, IFN-γ, IL-12 p40, and Fas ligand. CD40 stimulation and IL-2 may therefore be of use to promote antitumor responses in advanced metastatic cancer.


Cancer Research | 2006

Enhanced antitumor response by divergent modulation of natural killer and natural killer T cells in the liver

Jeff Subleski; Veronica L. Hall; Timothy C. Back; John R. Ortaldo; Robert H. Wiltrout

The use of interleukin-18 (IL-18) together with IL-12 induced high levels of IFN-gamma in tumor-bearing mice and regression of liver tumors that was abolished in IFN-gamma((-/-)) mice. Natural killer (NK) and NKT cells were the major producers of IFN-gamma in the livers of mice treated with IL-18 and/or IL-12. Liver NK cells were significantly increased by treatment with IL-18/IL-12, whereas the degree of liver NKT cell TCR detection was diminished by this treatment. Reduction of NK cells with anti-asGM1 decreased the antitumor activity of IL-18/IL-12 therapy and revealed NK cells to be an important component for tumor regression in the liver. In contrast, the antitumor effects of both IL-18 and IL-12 were further increased in CD1d((-/-)) mice, which lack NKT cells. Our data, therefore, show that the antitumor activity induced in mice by IL-18/IL-12 is NK and IFN-gamma dependent and is able to overcome an endogenous immunosuppressive effect of NKT cells in the liver microenvironment. These results suggest that immunotherapeutic approaches that enhance NK cell function while eliminating or altering NKT cells could be effective in the treatment of cancer in the liver.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Successful immunotherapy with IL-2/anti-CD40 induces the chemokine-mediated mitigation of an immunosuppressive tumor microenvironment

Jonathan M. Weiss; Timothy C. Back; Anthony J. Scarzello; Jeff Subleski; Veronica L. Hall; Jimmy K. Stauffer; Xin Chen; Dejan Micic; Kory Alderson; William J. Murphy; Robert H. Wiltrout

Treatment of mice bearing orthotopic, metastatic tumors with anti-CD40 antibody resulted in only partial, transient anti-tumor effects whereas combined treatment with IL-2/anti-CD40, induced tumor regression. The mechanisms for these divergent anti-tumor responses were examined by profiling tumor-infiltrating leukocyte subsets and chemokine expression within the tumor microenvironment after immunotherapy. IL-2/anti-CD40, but not anti-CD40 alone, induced significant infiltration of established tumors by NK and CD8+ T cells. To further define the role of chemokines in leukocyte recruitment into tumors, we evaluated anti-tumor responses in mice lacking the chemokine receptor, CCR2. The anti-tumor effects and leukocyte recruitment mediated by anti-CD40 alone, were completely abolished in CCR2−/− mice. In contrast, IL-2/anti-CD40-mediated leukocyte recruitment and reductions in primary tumors and metastases were maintained in CCR2−/− mice. Treatment of mice with IL-2/anti-CD40, but not anti-CD40 alone, also caused an IFN-γ-dependent increase in the expression of multiple Th1 chemokines within the tumor microenvironment. Interestingly, although IL-2/anti-CD40 treatment increased Tregs in the spleen, it also caused a coincident IFN-γ-dependent reduction in CD4+/FoxP3+ Tregs, myeloid-derived suppressor cells and Th2 chemokine expression specifically within the tumor microenvironment that was not observed after treatment with anti-CD40 alone. Similar effects were observed using IL-15 in combination with anti-CD40. Taken together, our data demonstrate that IL-2/anti-CD40, but not anti-CD40 alone, can preferentially reduce the overall immunosuppressive milieu within the tumor microenvironment. These results suggest that the use of anti-CD40 in combination with IL-2 or IL-15 may hold substantially more promise for clinical cancer treatment than anti-CD40 alone.


Cancer Research | 2009

Interleukin-15 Enhances Proteasomal Degradation of Bid in Normal Lymphocytes: Implications for Large Granular Lymphocyte Leukemias

Deborah L. Hodge; Jun Yang; Matthew D. Buschman; Paul Schaughency; Hong Dang; William Bere; Yili Yang; Ram Savan; Jeff Subleski; Xiao Ming Yin; Thomas P. Loughran; Howard A. Young

Large granular lymphocyte (LGL) leukemia is a clonal proliferative disease of T and natural killer (NK) cells. Interleukin (IL)-15 is important for the development and progression of LGL leukemia and is a survival factor for normal NK and T memory cells. IL-15 alters expression of Bcl-2 family members, Bcl-2, Bcl-XL, Bim, Noxa, and Mcl-1; however, effects on Bid have not been shown. Using an adoptive transfer model, we show that NK cells from Bid-deficient mice survive longer than cells from wild-type control mice when transferred into IL-15-null mice. In normal human NK cells, IL-15 significantly reduces Bid accumulation. Decreases in Bid are not due to alterations in RNA accumulation but result from increased proteasomal degradation. IL-15 up-regulates the E3 ligase HDM2 and we find that HDM2 directly interacts with Bid. HDM2 suppression by short hairpin RNA increases Bid accumulation lending further support for HDM2 involvement in Bid degradation. In primary leukemic LGLs, Bid levels are low but are reversed with bortezomib treatment with subsequent increases in LGL apoptosis. Overall, these data provide a novel molecular mechanism for IL-15 control of Bid that potentially links this cytokine to leukemogenesis through targeted proteasome degradation of Bid and offers the possibility that proteasome inhibitors may aid in the treatment of LGL leukemia.


Journal of Autoimmunity | 2009

Application of tissue-specific NK and NKT cell activity for tumor immunotherapy.

Jeff Subleski; Robert H. Wiltrout; Jonathan M. Weiss

Natural killer (NK) and NKT cells are a first line of defense against pathogens and transformed cells. However, dysregulation of their function can lead to autoimmune disease. A better understanding of the mechanisms controlling NK and NKT effector function should lead to the development of improved strategies for the treatment of many diseases. The site in which NK and NKT cells reside should be taken into account, because accumulating evidence suggests that the tissue microenvironment strongly influences their function. In this regard, the liver represents a unique immunologic organ in which the balance between the need for tolerance and the ability to respond rapidly to pathogens and tissue injury is tightly regulated. NK cells in the liver have augmented cytolytic activity as compared to other organs, which is consistent with a role for liver-associated NK cells in being critical effector cells for inhibiting tumor metastasis in the liver. Several studies also suggest that hepatic NKT cells have different functions than those in other organs. Whereas splenic and thymic NKT cells have been shown to suppress diabetes development, facilitate the induction of systemic tolerance and are regulated by IL-4 and other Th2 cytokines, certain subsets of NKT cells in the liver are important sources of Th1 cytokines such as Interferon gamma, and are the primary mediators of anti-tumor responses. The unique properties and roles as critical effector cells make NK and NKT cells within the liver microenvironment attractive targets of immunotherapeutic approaches that have the goal of controlling tumor metastasis in the liver.


Immunotherapy | 2011

The split personality of NKT cells in malignancy, autoimmune and allergic disorders

Jeff Subleski; Qun Jiang; Jonathan M. Weiss; Robert H. Wiltrout

NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.


Journal of Immunology | 2014

Regulatory T Cells and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment Undergo Fas-Dependent Cell Death during IL-2/αCD40 Therapy

Jonathan M. Weiss; Jeff Subleski; Tim Back; Xin Chen; Stephanie K. Watkins; Hideo Yagita; Thomas J. Sayers; William J. Murphy; Robert H. Wiltrout

Fas ligand expression in certain tumors has been proposed to contribute to immunosuppression and poor prognosis. However, immunotherapeutic approaches may elicit the Fas-mediated elimination of immunosuppressive regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within tumors that represent major obstacles for cancer immunotherapy. Previously, we showed that IL-2 and agonistic CD40 Ab (αCD40) elicited synergistic antitumor responses coincident with the efficient removal of Tregs and MDSCs. We demonstrate in this study in two murine tumor models that Treg and MDSC loss within the tumor microenvironment after IL-2/αCD40 occurs through a Fas-dependent cell death pathway. Among tumor-infiltrating leukocytes, CD8+ T cells, neutrophils, and immature myeloid cells expressed Fas ligand after treatment. Fas was expressed by tumor-associated Tregs and immature myeloid cells, including MDSCs. Tregs and MDSCs in the tumor microenvironment expressed active caspases after IL-2/αCD40 therapy and, in contrast with effector T cells, Tregs significantly downregulated Bcl-2 expression. In contrast, Tregs and MDSCs proliferated and expanded in the spleen after treatment. Adoptive transfer of Fas-deficient Tregs or MDSCs into wild-type, Treg-, or MDSC-depleted hosts resulted in the persistence of Tregs or MDSCs and the loss of antitumor efficacy in response to IL-2/αCD40. These results demonstrate the importance of Fas-mediated Treg/MDSC removal for successful antitumor immunotherapy. Our results suggest that immunotherapeutic strategies that include exploiting Treg and MDSC susceptibility to Fas-mediated apoptosis hold promise for treatment of cancer.


Journal of Immunology | 2011

TCR-dependent and –independent activation underlie liver-specific regulation of NKT cells

Jeff Subleski; Veronica L. Hall; Thomas Wolfe; Anthony J. Scarzello; Jonathan M. Weiss; Tim Chan; Deborah L. Hodge; Timothy C. Back; John R. Ortaldo; Robert H. Wiltrout

The fate of invariant NKT (iNKT) cells following activation remains controversial and unclear. We systemically examined how iNKT cells are regulated following TCR-dependent and -independent activation with α-galactosylceramide (αGC) or IL-18 plus IL-12, respectively. Our studies reveal activation by αGC or IL-18 plus IL-12 induced transient depletion of iNKT cells exclusively in the liver that was independent of caspase 3-mediated apoptosis. The loss of iNKT cells was followed by repopulation and expansion of phenotypically distinct cells via different mechanisms. Liver iNKT cell expansion following αGC, but not IL-18 plus IL-12, treatment required an intact spleen and IFN-γ. Additionally, IL-18 plus IL-12 induced a more prolonged expansion of liver iNKT cells compared with αGC. iNKT cells that repopulate the liver following αGC had higher levels of suppressive receptors PD-1 and Lag3, whereas those that repopulate the liver following IL-18 plus IL-12 had increased levels of TCR and ICOS. In contrast to acute treatment that caused a transient loss of iNKT cells, chronic αGC or IL-18 plus IL-12 treatment caused long-term systemic loss requiring an intact thymus for repopulation of the liver. This report reveals a previously undefined role for the liver in the depletion of activated iNKT cells. Additionally, TCR-dependent and -independent activation differentially regulate iNKT cell distribution and phenotype. These results provide new insights for understanding how iNKT cells are systemically regulated following activation.


Journal of Hepatology | 2015

Serum-based tracking of de novo initiated liver cancer progression reveals early immunoregulation and response to therapy

Jeff Subleski; Anthony J. Scarzello; W. Gregory Alvord; Qun Jiang; Jimmy K. Stauffer; Bahara Saleh; Timothy C. Back; Jonathan M. Weiss; Robert H. Wiltrout

BACKGROUND & AIMS Liver inflammatory diseases associated with cancer promoting somatic oncogene mutations are increasing in frequency. Preclinical cancer models that allow for the study of early tumor progression are often protracted, which limits the experimental study parameters due to time and expense. Here we report a robust inexpensive approach using Sleeping Beauty transposition (SBT) delivery of oncogenes along with Gaussia Luciferase expression vector GLuc, to assess de novo liver tumor progression, as well as the detection of innate immune responses or responses induced by therapeutic intervention. METHODS Tracking de novo liver tumor progression with GLuc was demonstrated in models of hepatocellular carcinoma (HCC) or adenoma (HCA) initiated by hydrodynamic delivery of SBT oncogenes. RESULTS Rising serum luciferase levels correlated directly with increasing liver tumor burden and eventual morbidity. Early detection of hepatocyte apoptosis from mice with MET+CAT transfected hepatocytes was associated with a transient delay in HCC growth mediated by a CD8(+) T-cell response against transformed hepatocytes. Furthermore, mice that lack B cells or macrophages had an increase in TUNEL(+) hepatocytes following liver MET transfection demonstrating that these cells provide protection from MET-induced hepatocyte apoptosis. Treatment with IL-18+IL-12 of mice displaying established HCC decreased tumor burden which was associated with decreased levels of serum luciferase. CONCLUSIONS Hydrodynamic delivery of the SBT vector GLuc to hepatocytes serves as a simple blood-based approach for real-time tracking of pathologically distinct types of liver cancer. This revealed tumor-induced immunologic responses and was beneficial in monitoring the efficacy of therapeutic interventions.

Collaboration


Dive into the Jeff Subleski's collaboration.

Top Co-Authors

Avatar

Robert H. Wiltrout

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Weiss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Ortaldo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Deborah L. Hodge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Howard A. Young

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Timothy C. Back

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Scarzello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veronica L. Hall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cyril Berthet

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge