Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M. Weiss is active.

Publication


Featured researches published by Jonathan M. Weiss.


Science Translational Medicine | 2010

Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer

Jonathan M. Weiss; Martin L. Sos; Danila Seidel; Martin Peifer; Thomas Zander; Johannes M. Heuckmann; Roland T. Ullrich; Roopika Menon; Sebastian Maier; Alex Soltermann; Holger Moch; Patrick Wagener; Florian Fischer; Stefanie Heynck; Mirjam Koker; Jakob Schöttle; Frauke Leenders; Franziska Gabler; Ines Dabow; Silvia Querings; Lukas C. Heukamp; Hyatt Balke-Want; Sascha Ansén; Daniel Rauh; Ingelore Baessmann; Janine Altmüller; Zoe Wainer; Matthew Conron; Gavin Wright; Prudence A. Russell

FGFR1 amplification provides a therapeutic target for squamous cell lung cancer, which is resistant to other targeted lung cancer drugs. A Smoking Gun for Lung Cancer Detectives and scientists alike need strong evidence to take their cases to the judge, who for scientists is often a patient with a deadly disease. Yet, new culprits are sometimes found that can break a case wide open. Lung cancer, which accounts for more than 10% of the global cancer burden, has a poor prognosis and inadequately responds to chemotherapy and radiotherapy. New targeted treatments for lung adenocarcinomas inhibit the oncogenic versions of signaling protein kinases that arise from mutations typically found in lung cancer patients who have never smoked. However, smokers frequently suffer from a different deviant, squamous cell lung cancers, for which there are no known molecular genetic targets for therapy. Now, Weiss et al. have fingered a new suspect in smoking-related lung cancer: amplification of the FGFR1 gene, which encodes the fibroblast growth factor receptor 1 tyrosine kinase (FGFR1). To identify therapeutically viable genetic alterations that may influence squamous cell lung cancer, Weiss et al. performed genomic profiles on a large set of lung cancer specimens. Squamous cell lung cancer samples showed FGFR1 amplification, which was not found in other lung cancer subtypes. The authors then determined that a molecule that broadly inhibits FGF receptor function could block tumor growth and cause cell death in the cancers that expressed high amounts of the FGFR1 gene product in a manner that was dependent on FGFR1 expression. Moreover, FGFR1 inhibition resulted in a considerable decrease in tumor size in a mouse model of FGFR1-amplified lung cancer. This culmination of evidence implies that inhibition of this receptor tyrosine kinase should be explored as a candidate therapy for corralling squamous cell lung cancer in smokers. Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous cell lung cancer currently lacks therapeutically exploitable genetic alterations. We conducted a systematic search in a set of 232 lung cancer specimens for genetic alterations that were therapeutically amenable and then performed high-resolution gene copy number analyses. We identified frequent and focal fibroblast growth factor receptor 1 (FGFR1) amplification in squamous cell lung cancer (n = 155), but not in other lung cancer subtypes, and, by fluorescence in situ hybridization, confirmed the presence of FGFR1 amplifications in an independent cohort of squamous cell lung cancer samples (22% of cases). Using cell-based screening with the FGFR inhibitor PD173074 in a large (n = 83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth and induced apoptosis specifically in those lung cancer cells carrying amplified FGFR1. We validated the FGFR1 dependence of FGFR1-amplified cell lines by FGFR1 knockdown and by ectopic expression of an FGFR1-resistant allele (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally, we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Thus, focal FGFR1 amplification is common in squamous cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.


Cancer Research | 2009

PTEN Loss Contributes to Erlotinib Resistance in EGFR-Mutant Lung Cancer by Activation of Akt and EGFR

Martin L. Sos; Mirjam Koker; Barbara A. Weir; Stefanie Heynck; Rosalia Rabinovsky; Thomas Zander; Jens M. Seeger; Jonathan M. Weiss; Florian Fischer; Peter Frommolt; Kathrin Michel; Martin Peifer; Craig H. Mermel; Luc Girard; Michael Peyton; Adi F. Gazdar; John D. Minna; Levi A. Garraway; Hamid Kashkar; William Pao; Matthew Meyerson; Roman K. Thomas

Clinical resistance to epidermal growth factor receptor (EGFR) inhibition in lung cancer has been linked to the emergence of the EGFR T790M resistance mutation or amplification of MET. Additional mechanisms contributing to EGFR inhibitor resistance remain elusive. By applying combined analyses of gene expression, copy number, and biochemical analyses of EGFR inhibitor responsiveness, we identified homozygous loss of PTEN to segregate EGFR-dependent and EGFR-independent cells. We show that in EGFR-dependent cells, PTEN loss partially uncouples mutant EGFR from downstream signaling and activates EGFR, thereby contributing to erlotinib resistance. The clinical relevance of our findings is supported by the observation of PTEN loss in 1 out of 24 primary EGFR-mutant non-small cell lung cancer (NSCLC) tumors. These results suggest a novel resistance mechanism in EGFR-mutant NSCLC involving PTEN loss.


Journal of Clinical Investigation | 2009

Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions

Martin L. Sos; Kathrin Michel; Thomas Zander; Jonathan M. Weiss; Peter Frommolt; Martin Peifer; Danan Li; Roland T. Ullrich; Mirjam Koker; Florian Fischer; Takeshi Shimamura; Daniel Rauh; Craig H. Mermel; Stefanie Fischer; Isabel Stückrath; Stefanie Heynck; Rameen Beroukhim; William M. Lin; Wendy Winckler; Kinjal Shah; Thomas LaFramboise; Whei F. Moriarty; Megan Hanna; Laura Tolosi; Jörg Rahnenführer; Roeland Verhaak; Derek Y. Chiang; Gad Getz; Martin Hellmich; Jürgen Wolf

Somatic genetic alterations in cancers have been linked with response to targeted therapeutics by creation of specific dependency on activated oncogenic signaling pathways. However, no tools currently exist to systematically connect such genetic lesions to therapeutic vulnerability. We have therefore developed a genomics approach to identify lesions associated with therapeutically relevant oncogene dependency. Using integrated genomic profiling, we have demonstrated that the genomes of a large panel of human non-small cell lung cancer (NSCLC) cell lines are highly representative of those of primary NSCLC tumors. Using cell-based compound screening coupled with diverse computational approaches to integrate orthogonal genomic and biochemical data sets, we identified molecular and genomic predictors of therapeutic response to clinically relevant compounds. Using this approach, we showed that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations confer enhanced Hsp90 dependency and validated this finding in mice with KRAS-driven lung adenocarcinoma, as these mice exhibited dramatic tumor regression when treated with an Hsp90 inhibitor. In addition, we found that cells with copy number enhancement of v-abl Abelson murine leukemia viral oncogene homolog 2 (ABL2) and ephrin receptor kinase and v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) kinase family genes were exquisitely sensitive to treatment with the SRC/ABL inhibitor dasatinib, both in vitro and when it xenografted into mice. Thus, genomically annotated cell-line collections may help translate cancer genomics information into clinical practice by defining critical pathway dependencies amenable to therapeutic inhibition.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer

Martin L. Sos; Stefanie Fischer; Roland T. Ullrich; Martin Peifer; Johannes M. Heuckmann; Mirjam Koker; Stefanie Heynck; Isabel Stückrath; Jonathan M. Weiss; Florian Fischer; Kathrin Michel; Aviva Goel; Lucia Regales; Katerina Politi; Samanthi A. Perera; Matthäus Getlik; Lukas C. Heukamp; Sascha Ansén; Thomas Zander; Rameen Beroukhim; Hamid Kashkar; Kevan M. Shokat; William R. Sellers; Daniel Rauh; Christine Orr; Klaus P. Hoeflich; Lori S. Friedman; Kwok-Kin Wong; William Pao; Roman K. Thomas

In cancer, genetically activated proto-oncogenes often induce “upstream” dependency on the activity of the mutant oncoprotein. Therapeutic inhibition of these activated oncoproteins can induce massive apoptosis of tumor cells, leading to sometimes dramatic tumor regressions in patients. The PI3K and MAPK signaling pathways are central regulators of oncogenic transformation and tumor maintenance. We hypothesized that upstream dependency engages either one of these pathways preferentially to induce “downstream” dependency. Therefore, we analyzed whether downstream pathway dependency segregates by genetic aberrations upstream in lung cancer cell lines. Here, we show by systematically linking drug response to genomic aberrations in non-small-cell lung cancer, as well as in cell lines of other tumor types and in a series of in vivo cancer models, that tumors with genetically activated receptor tyrosine kinases depend on PI3K signaling, whereas tumors with mutations in the RAS/RAF axis depend on MAPK signaling. However, efficacy of downstream pathway inhibition was limited by release of negative feedback loops on the reciprocal pathway. By contrast, combined blockade of both pathways was able to overcome the reciprocal pathway activation induced by inhibitor-mediated release of negative feedback loops and resulted in a significant increase in apoptosis and tumor shrinkage. Thus, by using a systematic chemo-genomics approach, we identify genetic lesions connected to PI3K and MAPK pathway activation and provide a rationale for combined inhibition of both pathways. Our findings may have implications for patient stratification in clinical trials.


Expert Opinion on Biological Therapy | 2007

Immunotherapy of Cancer by IL-12-based Cytokine Combinations

Jonathan M. Weiss; Jeff Subleski; Jon M Wigginton; Robert H. Wiltrout

Cancer is a multi-faceted disease comprising complex interactions between neoplastic and normal cells. Over the past decade, there has been considerable progress in defining the molecular, cellular and environmental contributions to the pathophysiology of tumor development. Despite these advances, the conventional treatment of patients still generally involves surgery, radiotherapy and/or chemotherapy, and the clinical outcome for many of these efforts remains unsatisfactory. Recent studies have highlighted the feasibility of using immunotherapeutic approaches that seek to enhance host immune responses to developing tumors. These strategies include immunomodulatory cytokines, with TNF-α, type I or type II IFNs, IL-2, IL-12, IL-15 and IL-18 being among the most potent inducers of anti-tumor activity in a variety of preclinical studies. More recently, some exciting new cytokines have been characterized, such as IL-21, IL-23, IL-27 and their immunomodulatory and antitumor effects in vitro and in vivo suggest that they may have considerable promise for future immunotherapy protocols. The promise of cytokine therapy does indeed derive from the identification of these novel cytokines but even more fundamentally, the field is greatly benefiting from the ever-expanding amount of preclinical data that convincingly demonstrate synergistic and/or novel biologic effects, which may be achieved through the use of several combinations of cytokines with complementary immune-stimulating capabilities. One cytokine in particular, IL-12, holds considerable promise by virtue of the fact that it plays a central role in regulating both innate and adaptive immune responses, can by itself induce potent anticancer effects, and synergizes with several other cytokines for increased immunoregulatory and antitumor activities. This review discusses the antitumor activity of IL-12, with a special emphasis on its ability to synergize with other cytokines for enhancement of immune effector cell populations and regulation of host–tumor cell interactions and the overall tumor microenvironment.


Clinical Cancer Research | 2011

ALK Mutations Conferring Differential Resistance to Structurally Diverse ALK Inhibitors

Johannes M. Heuckmann; Michael Hölzel; Martin L. Sos; Stefanie Heynck; Hyatt Balke-Want; Mirjam Koker; Martin Peifer; Jonathan M. Weiss; Christine M. Lovly; Christian Grütter; Daniel Rauh; William Pao; Roman K. Thomas

Purpose: EML4–ALK fusions define a subset of lung cancers that can be effectively treated with anaplastic lymphoma kinase (ALK) inhibitors. Unfortunately, the duration of response is heterogeneous and acquired resistance limits their ultimate efficacy. Thus, a better understanding of resistance mechanisms will help to enhance tumor control in EML4–ALK-positive tumors. Experimental Design: By applying orthogonal functional mutagenesis screening approaches, we screened for mutations inducing resistance to the aminopyridine PF02341066 (crizotinib) and/or the diaminopyrimidine TAE684. Results: Here, we show that the resistance mutation, L1196M, as well as other crizotinib resistance mutations (F1174L and G1269S), are highly sensitive to the structurally unrelated ALK inhibitor TAE684. In addition, we identified two novel EML4–ALK resistance mutations (L1198P and D1203N), which unlike previously reported mutations, induced resistance to both ALK inhibitors. An independent resistance screen in ALK-mutant neuroblastoma cells yielded the same L1198P resistance mutation but defined two additional mutations conferring resistance to TAE684 but not to PF02341066. Conclusions: Our results show that different ALK resistance mutations as well as different ALK inhibitors impact the therapeutic efficacy in the setting of EML4–ALK fusions and ALK mutations. Clin Cancer Res; 17(23); 7394–401. ©2011 AACR.


Nature Medicine | 2007

IFN-γ mediates CD4 + T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy

Vanessa Berner; Haiyan Liu; Qing Zhou; Kory L. Alderson; Kai Sun; Jonathan M. Weiss; Timothy C. Back; Dan L. Longo; Bruce R. Blazar; Robert H. Wiltrout; Lisbeth A. Welniak; Doug Redelman; William J. Murphy

Protective cell-mediated immune responses in cancer are critically dependent on T-helper type 1 (TH1) cytokines such as interferon-γ (IFN-γ). We have previously shown that the combination of CD40 stimulation and interleukin-2 (IL-2) leads to synergistic antitumor responses in several models of advanced metastatic disease. We now report that after this treatment and other immunotherapy regimens, the CD4+ T-cell population, in contrast to CD8+ T cells, did not significantly increase but rather exhibited a substantial level of apoptosis that was dependent on IFN-γ. Mice immunized with tumor cells and treated with an immunotherapy regimen that was initially protective were later unable to mount effective memory responses compared with immunized mice not receiving immunotherapy. Immunotherapy given to tumor-bearing Ifngr−/− mice resulted in restoration of secondary responses. Thus, although immunotherapeutic regimens inducing strong IFN-γ responses can lead to successful early antitumor efficacy, they may also impair the development of durable antitumor responses.


Cancer Research | 2010

Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation.

Martin L. Sos; Haridas B. Rode; Stefanie Heynck; Martin Peifer; Florian Fischer; Sabine Klüter; Vijaykumar Pawar; Cecile Reuter; Johannes M. Heuckmann; Jonathan M. Weiss; Lars Ruddigkeit; Matthias Rabiller; Mirjam Koker; Jeffrey R. Simard; Matthäus Getlik; Yuki Yuza; Tzu-Hsiu Chen; Heidi Greulich; Roman K. Thomas; Daniel Rauh

Reversible epidermal growth factor receptor (EGFR) inhibitors are the first class of small molecules to improve progression-free survival of patients with EGFR-mutated lung cancers. Second-generation EGFR inhibitors introduced to overcome acquired resistance by the T790M resistance mutation of EGFR have thus far shown limited clinical activity in patients with T790M-mutant tumors. In this study, we systematically analyzed the determinants of the activity and selectivity of the second-generation EGFR inhibitors. A focused library of irreversible as well as structurally corresponding reversible EGFR-inhibitors was synthesized for chemogenomic profiling involving over 79 genetically defined NSCLC and 19 EGFR-dependent cell lines. Overall, our results show that the growth-inhibitory potency of all irreversible inhibitors against the EGFR(T790M) resistance mutation was limited by reduced target inhibition, linked to decreased binding velocity to the mutant kinase. Combined treatment of T790M-mutant tumor cells with BIBW-2992 and the phosphoinositide-3-kinase/mammalian target of rapamycin inhibitor PI-103 led to synergistic induction of apoptosis. Our findings offer a mechanistic explanation for the limited efficacy of irreversible EGFR inhibitors in EGFR(T790M) gatekeeper-mutant tumors, and they prompt combination treatment strategies involving inhibitors that target signaling downstream of the EGFR.


Scientific Reports | 2015

Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations

Simon Chang-Hao Tsao; Jonathan M. Weiss; Christopher Hudson; Christopher Christophi; Jonathan Cebon; Andreas Behren; Alexander Dobrovic

We assessed the utility of droplet digital PCR (ddPCR) to evaluate the potential of using circulating tumour DNA (ctDNA) as a post therapy monitoring tool in melanoma by comparing it to serum LDH levels and RECIST scores. ddPCR was shown to be reliable in distinguishing mutant from wild type alleles with no false positives. Subsequently, we quantified ctDNA (V600EBRAF,V600KBRAF or Q61HNRAS) in 6 stage IV melanoma patients across several time points during their treatment course. All tested patients had detectable ctDNA, which exhibited dynamic changes corresponding to the changes in their disease status. The ctDNA levels fell upon treatment response and rose with detectable disease progression. In our group of patients, ctDNA was more consistent and informative than LDH as a blood-based biomarker. In addition, BRAF mutant ctDNA as detected by ddPCR could be used diagnostically where the tumour block was unavailable. In conclusion, this study demonstrates the applicability of using ddPCR to detect and quantify ctDNA in the plasma of melanoma patients.


Cancer Research | 2008

Nitric Oxide Is a Key Component in Inflammation-Accelerated Tumorigenesis

S. Perwez Hussain; Peijun He; Jeffery Subleski; Lorne J. Hofseth; Glenwood E. Trivers; Leah E. Mechanic; Anne B. Hofseth; Mark E. Bernard; Jonathan Schwank; G Nguyen; Ewy Mathe; Draginja Djurickovic; Diana C. Haines; Jonathan M. Weiss; Timothy C. Back; Eilene Gruys; Victor E. Laubach; Robert H. Wiltrout; Curtis C. Harris

Nitric oxide (NO(*)), an important signaling molecule and a component of inflammatory response, is involved in tumorigenesis. However, the quantity of NO(*) and the cellular microenvironment influences the role of NO(*) in tumor development. We used a genetic strategy to test the hypothesis that an inflammatory microenvironment with an enhanced level of NO(*) accelerates spontaneous tumor development. C. parvum-induced inflammation and increased NO(*) synthase-2 (NOS2) expression coincided with accelerated spontaneous tumor development, mostly lymphomas, in p53-/-NOS2+/+ C57BL6 mice when compared with the controls (P = 0.001). However, p53-/-NOS2-/- mice did not show any difference in tumor latency between C. parvum-treated and control groups. In C. parvum-treated p53-/-NOS2+/+ mice, tumor development was preceded by a higher expression of NOS2 and phosphorylated Akt-Ser(473) (pAkt-Ser473) in spleen, increased cell proliferation measured by Ki-67 IHC in spleen and thymus, and a lower apoptotic index and CD95-L expression in spleen and thymus. C. parvum-treated p53-/-NOS2+/+ mice showed an increase in the number of Foxp3(+) T-reg cells, dendritic cells (DC), as well as increased CD80(+), CD86(+), CD40(+), and CD83(+) on DC in the spleen. Regulatory T-cells (T-reg) and the maturation of DC may modulate tumorigenesis. An increase in the FoxP3(+)T-reg cells in C. parvum-treated p53-/-NOS2+/+ mice indicates a role of NO(*) in the regulation of T-reg cells that may contribute to a protumor shift of the immune environment favoring an accelerated tumor development. These data provide genetic and mechanistic evidence that an inflammatory microenvironment and an increased level of NO(*) can accelerate tumor development.

Collaboration


Dive into the Jonathan M. Weiss's collaboration.

Top Co-Authors

Avatar

Robert H. Wiltrout

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeff Subleski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Timothy C. Back

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Ortaldo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimmy K. Stauffer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge