Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Vierstra is active.

Publication


Featured researches published by Jeff Vierstra.


Nature | 2012

The accessible chromatin landscape of the human genome.

Robert E. Thurman; Eric Rynes; Richard Humbert; Jeff Vierstra; Matthew T. Maurano; Eric Haugen; Nathan C. Sheffield; Andrew B. Stergachis; Hao Wang; Benjamin Vernot; Kavita Garg; Sam John; Richard Sandstrom; Daniel Bates; Lisa Boatman; Theresa K. Canfield; Morgan Diegel; Douglas Dunn; Abigail K. Ebersol; Tristan Frum; Erika Giste; Audra K. Johnson; Ericka M. Johnson; Tanya Kutyavin; Bryan R. Lajoie; Bum Kyu Lee; Kristen Lee; Darin London; Dimitra Lotakis; Shane Neph

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Nature | 2012

An expansive human regulatory lexicon encoded in transcription factor footprints

Shane Neph; Jeff Vierstra; Andrew B. Stergachis; Alex Reynolds; Eric Haugen; Benjamin Vernot; Robert E. Thurman; Sam John; Richard Sandstrom; Audra K. Johnson; Matthew T. Maurano; Richard Humbert; Eric Rynes; Hao Wang; Shinny Vong; Kristen Lee; Daniel Bates; Morgan Diegel; Vaughn Roach; Douglas Dunn; Jun Neri; Anthony Schafer; R. Scott Hansen; Tanya Kutyavin; Erika Giste; Molly Weaver; Theresa K. Canfield; Peter J. Sabo; Miaohua Zhang; Gayathri Balasundaram

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis–regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Science | 2013

An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level

Daniel E. Bauer; Sophia C. Kamran; Samuel Lessard; Jian Xu; Yuko Fujiwara; Carrie Lin; Zhen Shao; Matthew C. Canver; Elenoe C. Smith; Luca Pinello; Peter J. Sabo; Jeff Vierstra; Richard A. Voit; Guo-Cheng Yuan; Matthew H. Porteus; John A. Stamatoyannopoulos; Guillaume Lettre; Stuart H. Orkin

BCL11A Variants Recent chromatin mapping data have suggested that trait-associated variants often mark regulatory DNA. However, there has been little rigorous experimental investigation of regulatory variation. Bauer et al. (p. 253; see the Perspective by Hardison and Blobel) performed an in-depth study of the BCL11A fetal hemoglobin-associated locus. The trait-associated variants revealed a chromatin signature that enhanced erythroid development. The enhancer was required for erythroid expression of BCL11A and thus for globin gene expression. Fine-mapping reveals a promising therapeutic target for genome engineering in the β-hemoglobinopathies. [Also see Perspective by Hardison and Blobel] Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage–specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the β-hemoglobinopathies.


Bioinformatics | 2012

BEDOPS: high-performance genomic feature operations

Shane Neph; Scott Kuehn; Alex Reynolds; Eric Haugen; Robert E. Thurman; Audra K. Johnson; Eric Rynes; Matthew T. Maurano; Jeff Vierstra; Sean Thomas; Richard Sandstrom; Richard Humbert; John A. Stamatoyannopoulos

UNLABELLED The large and growing number of genome-wide datasets highlights the need for high-performance feature analysis and data comparison methods, in addition to efficient data storage and retrieval techniques. We introduce BEDOPS, a software suite for common genomic analysis tasks which offers improved flexibility, scalability and execution time characteristics over previously published packages. The suite includes a utility to compress large inputs into a lossless format that can provide greater space savings and faster data extractions than alternatives. AVAILABILITY http://code.google.com/p/bedops/ includes binaries, source and documentation.


Cell | 2015

Native Elongating Transcript Sequencing Reveals Human Transcriptional Activity at Nucleotide Resolution

Andreas Mayer; Julia di Iulio; Seth Maleri; Umut Eser; Jeff Vierstra; Alex Reynolds; Richard Sandstrom; John A. Stamatoyannopoulos; L. Stirling Churchman

Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.


Nature | 2014

Conservation of trans-acting circuitry during mammalian regulatory evolution

Andrew B. Stergachis; Shane Neph; Richard Sandstrom; Eric Haugen; Alex Reynolds; Miaohua Zhang; Rachel Byron; Theresa K. Canfield; Sandra Stelhing-Sun; Kristen Lee; Robert E. Thurman; Shinny Vong; Daniel Bates; Fidencio Neri; Morgan Diegel; Erika Giste; Douglas Dunn; Jeff Vierstra; R. Scott Hansen; Audra K. Johnson; Peter J. Sabo; Matthew S. Wilken; Thomas A. Reh; Piper M. Treuting; Rajinder Kaul; Mark Groudine; Michael Bender; Elhanan Borenstein; John A. Stamatoyannopoulos

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Science | 2014

Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution

Jeff Vierstra; Eric Rynes; Richard Sandstrom; Miaohua Zhang; Theresa K. Canfield; R. Scott Hansen; Sandra Stehling-Sun; Peter J. Sabo; Rachel Byron; Richard Humbert; Robert E. Thurman; Audra K. Johnson; Shinny Vong; Kristen Lee; Daniel Bates; Fidencio Neri; Morgan Diegel; Erika Giste; Eric Haugen; Douglas Dunn; Matthew S. Wilken; Steven Z. Josefowicz; Robert M. Samstein; Kai Hsin Chang; Evan E. Eichler; Marella de Bruijn; Thomas A. Reh; Arthur I. Skoultchi; Alexander Y. Rudensky; Stuart H. Orkin

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I–hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Mouse-to-human genomic comparisons illuminate conserved transcriptional programs despite regulatory rewiring. Rewiring the gene regulatory landscape DNAse I hypersensitive sites (DHSs) correlate with genomic locations that control where messenger RNA is to be produced. DHSs differ, depending on the cell type, developmental stage, and species. Viestra et al. compared mouse and human genome-wide DHS maps. Approximately one-third of the DHSs are conserved between the species, which separated approximately 550 million years ago. Most DHSs fell into tissue-specific cohorts; however, these were generally not conserved between the human and mouse. It seems that the majority of DHSs evolve because of changes in the sequence that gradually change how the region is regulated. Science, this issue p. 1007


Genome Research | 2012

Personal and population genomics of human regulatory variation

Benjamin Vernot; Andrew B. Stergachis; Matthew T. Maurano; Jeff Vierstra; Shane Neph; Robert E. Thurman; John A. Stamatoyannopoulos; Joshua M. Akey

The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geographically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is significant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipocytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and populations and demonstrate that a large proportion of functionally important variation lies beyond the exome.


Nature Genetics | 2015

Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo

Matthew T. Maurano; Eric Haugen; Richard Sandstrom; Jeff Vierstra; Anthony Shafer; Rajinder Kaul; John A. Stamatoyannopoulos

The function of human regulatory regions depends exquisitely on their local genomic environment and on cellular context, complicating experimental analysis of common disease- and trait-associated variants that localize within regulatory DNA. We use allelically resolved genomic DNase I footprinting data encompassing 166 individuals and 114 cell types to identify >60,000 common variants that directly influence transcription factor occupancy and regulatory DNA accessibility in vivo. The unprecedented scale of these data enables systematic analysis of the impact of sequence variation on transcription factor occupancy in vivo. We leverage this analysis to develop accurate models of variation affecting the recognition sites for diverse transcription factors and apply these models to discriminate nearly 500,000 common regulatory variants likely to affect transcription factor occupancy across the human genome. The approach and results provide a new foundation for the analysis and interpretation of noncoding variation in complete human genomes and for systems-level investigation of disease-associated variants.


Nature Methods | 2015

Functional footprinting of regulatory DNA

Jeff Vierstra; Andreas Reik; Kai Hsin Chang; Sandra Stehling-Sun; Yuanyue Zhou; Sarah J. Hinkley; David Paschon; Lei Zhang; Nikoletta Psatha; Yuri R. Bendana; Colleen M. O'Neil; Alexander Song; Andrea Mich; Pei Qi Liu; Gary Lee; Daniel E. Bauer; Michael C. Holmes; Stuart H. Orkin; Thalia Papayannopoulou; George Stamatoyannopoulos; Edward J. Rebar; Philip D. Gregory; Fyodor D. Urnov; John A. Stamatoyannopoulos

Regulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing–induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.

Collaboration


Dive into the Jeff Vierstra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Reynolds

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric Haugen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Peter J. Sabo

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shane Neph

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Bates

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge