Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Stamatoyannopoulos is active.

Publication


Featured researches published by John A. Stamatoyannopoulos.


Nature | 2008

Mapping and sequencing of structural variation from eight human genomes

Jeffrey M. Kidd; Gregory M. Cooper; William F. Donahue; Hillary S. Hayden; Nick Sampas; Tina Graves; Nancy F. Hansen; Brian Teague; Can Alkan; Francesca Antonacci; Eric Haugen; Troy Zerr; N. Alice Yamada; Peter Tsang; Tera L. Newman; Eray Tuzun; Ze Cheng; Heather M. Ebling; Nadeem Tusneem; Robert David; Will Gillett; Karen A. Phelps; Molly Weaver; David Saranga; Adrianne D. Brand; Wei Tao; Erik Gustafson; Kevin McKernan; Lin Chen; Maika Malig

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Nature Biotechnology | 2010

The NIH Roadmap Epigenomics Mapping Consortium

Bradley E. Bernstein; John A. Stamatoyannopoulos; Joseph F. Costello; Bing Ren; Aleksandar Milosavljevic; Alexander Meissner; Manolis Kellis; Marco A. Marra; Arthur L. Beaudet; Joseph R. Ecker; Peggy J. Farnham; Martin Hirst; Eric S. Lander; Tarjei S. Mikkelsen; James A. Thomson

The NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.


Genome Research | 2012

ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

Stephen G. Landt; Georgi K. Marinov; Anshul Kundaje; Pouya Kheradpour; Florencia Pauli; Serafim Batzoglou; Bradley E. Bernstein; Peter J. Bickel; James B. Brown; Philip Cayting; Yiwen Chen; Gilberto DeSalvo; Charles B. Epstein; Katherine I. Fisher-Aylor; Ghia Euskirchen; Mark Gerstein; Jason Gertz; Alexander J. Hartemink; Michael M. Hoffman; Vishwanath R. Iyer; Youngsook L. Jung; Subhradip Karmakar; Manolis Kellis; Peter V. Kharchenko; Qunhua Li; Tao Liu; X. Shirley Liu; Lijia Ma; Aleksandar Milosavljevic; Richard M. Myers

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.


Nature | 2014

Guidelines for investigating causality of sequence variants in human disease

Daniel G. MacArthur; Teri A. Manolio; David Dimmock; Heidi L. Rehm; Jay Shendure; Gonalo R. Abecasis; David Adams; Russ B. Altman; Euan A. Ashley; Jeffrey C. Barrett; Leslie G. Biesecker; Donald F. Conrad; Greg M. Cooper; Nancy J. Cox; Mark J. Daly; Mark Gerstein; David B. Goldstein; Joel N. Hirschhorn; Suzanne M. Leal; Len A. Pennacchio; John A. Stamatoyannopoulos; Shamil R. Sunyaev; David Valle; Benjamin F. Voight; Wendy Winckler; Chris Gunter

The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.


Genome Biology | 2007

Quantifying similarity between motifs

Shobhit Gupta; John A. Stamatoyannopoulos; Timothy L. Bailey; William Stafford Noble

A common question within the context of de novo motif discovery is whether a newly discovered, putative motif resembles any previously discovered motif in an existing database. To answer this question, we define a statistical measure of motif-motif similarity, and we describe an algorithm, called Tomtom, for searching a database of motifs with a given query motif. Experimental simulations demonstrate the accuracy of Tomtoms E values and its effectiveness in finding similar motifs.


Nature Genetics | 2011

Chromatin accessibility pre-determines glucocorticoid receptor binding patterns

Sam John; Peter J. Sabo; Robert E. Thurman; Myong Hee Sung; Simon C. Biddie; Thomas A. Johnson; Gordon L. Hager; John A. Stamatoyannopoulos

Development, differentiation and response to environmental stimuli are characterized by sequential changes in cellular state initiated by the de novo binding of regulated transcriptional factors to their cognate genomic sites. The mechanism whereby a given regulatory factor selects a limited number of in vivo targets from a myriad of potential genomic binding sites is undetermined. Here we show that up to 95% of de novo genomic binding by the glucocorticoid receptor, a paradigmatic ligand-activated transcription factor, is targeted to preexisting foci of accessible chromatin. Factor binding invariably potentiates chromatin accessibility. Cell-selective glucocorticoid receptor occupancy patterns appear to be comprehensively predetermined by cell-specific differences in baseline chromatin accessibility patterns, with secondary contributions from local sequence features. The results define a framework for understanding regulatory factor–genome interactions and provide a molecular basis for the tissue selectivity of steroid pharmaceuticals and other agents that intersect the living genome.


Nature | 2011

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster

Peter V. Kharchenko; Artyom A. Alekseyenko; Yuri B. Schwartz; Aki Minoda; Nicole C. Riddle; Jason Ernst; Peter J. Sabo; Erica Larschan; Andrey A. Gorchakov; Tingting Gu; Daniela Linder-Basso; Annette Plachetka; Gregory Shanower; Michael Y. Tolstorukov; Lovelace J. Luquette; Ruibin Xi; Youngsook L. Jung; Richard Park; Eric P. Bishop; Theresa P. Canfield; Richard Sandstrom; Robert E. Thurman; David M. MacAlpine; John A. Stamatoyannopoulos; Manolis Kellis; Sarah C. R. Elgin; Mitzi I. Kuroda; Vincenzo Pirrotta; Gary H. Karpen; Peter J. Park

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Nature | 2012

An expansive human regulatory lexicon encoded in transcription factor footprints

Shane Neph; Jeff Vierstra; Andrew B. Stergachis; Alex Reynolds; Eric Haugen; Benjamin Vernot; Robert E. Thurman; Sam John; Richard Sandstrom; Audra K. Johnson; Matthew T. Maurano; Richard Humbert; Eric Rynes; Hao Wang; Shinny Vong; Kristen Lee; Daniel Bates; Morgan Diegel; Vaughn Roach; Douglas Dunn; Jun Neri; Anthony Schafer; R. Scott Hansen; Tanya Kutyavin; Erika Giste; Molly Weaver; Theresa K. Canfield; Peter J. Sabo; Miaohua Zhang; Gayathri Balasundaram

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis–regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Nature Methods | 2009

Global mapping of protein-DNA interactions in vivo by digital genomic footprinting

Jay R. Hesselberth; Xiaoyu Chen; Zhihong Zhang; Peter J. Sabo; Richard Sandstrom; Alex Reynolds; Robert E. Thurman; Shane Neph; Michael S. Kuehn; William Stafford Noble; Stanley Fields; John A. Stamatoyannopoulos

The orchestrated binding of transcriptional activators and repressors to specific DNA sequences in the context of chromatin defines the regulatory program of eukaryotic genomes. We developed a digital approach to assay regulatory protein occupancy on genomic DNA in vivo by dense mapping of individual DNase I cleavages from intact nuclei using massively parallel DNA sequencing. Analysis of >23 million cleavages across the Saccharomyces cerevisiae genome revealed thousands of protected regulatory protein footprints, enabling de novo derivation of factor binding motifs and the identification of hundreds of new binding sites for major regulators. We observed striking correspondence between single-nucleotide resolution DNase I cleavage patterns and protein-DNA interactions determined by crystallography. The data also yielded a detailed view of larger chromatin features including positioned nucleosomes flanking factor binding regions. Digital genomic footprinting should be a powerful approach to delineate the cis-regulatory framework of any organism with an available genome sequence.


Genome Research | 2013

Dynamic DNA methylation across diverse human cell lines and tissues

Katherine E. Varley; Jason Gertz; Kevin M. Bowling; Stephanie L. Parker; Timothy E. Reddy; Florencia Pauli-Behn; Marie K. Cross; Brian A. Williams; John A. Stamatoyannopoulos; Gregory E. Crawford; Devin Absher; Barbara J. Wold; Richard M. Myers

As studies of DNA methylation increase in scope, it has become evident that methylation has a complex relationship with gene expression, plays an important role in defining cell types, and is disrupted in many diseases. We describe large-scale single-base resolution DNA methylation profiling on a diverse collection of 82 human cell lines and tissues using reduced representation bisulfite sequencing (RRBS). Analysis integrating RNA-seq and ChIP-seq data illuminates the functional role of this dynamic mark. Loci that are hypermethylated across cancer types are enriched for sites bound by NANOG in embryonic stem cells, which supports and expands the model of a stem/progenitor cell signature in cancer. CpGs that are hypomethylated across cancer types are concentrated in megabase-scale domains that occur near the telomeres and centromeres of chromosomes, are depleted of genes, and are enriched for cancer-specific EZH2 binding and H3K27me3 (repressive chromatin). In noncancer samples, there are cell-type specific methylation signatures preserved in primary cell lines and tissues as well as methylation differences induced by cell culture. The relationship between methylation and expression is context-dependent, and we find that CpG-rich enhancers bound by EP300 in the bodies of expressed genes are unmethylated despite the dense gene-body methylation surrounding them. Non-CpG cytosine methylation occurs in human somatic tissue, is particularly prevalent in brain tissue, and is reproducible across many individuals. This study provides an atlas of DNA methylation across diverse and well-characterized samples and enables new discoveries about DNA methylation and its role in gene regulation and disease.

Collaboration


Dive into the John A. Stamatoyannopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Sabo

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam John

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hao Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Vierstra

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Reynolds

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Shane Neph

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge