Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey A. Winkles is active.

Publication


Featured researches published by Jeffrey A. Winkles.


Nature Reviews Drug Discovery | 2008

The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting

Jeffrey A. Winkles

TWEAK is a multifunctional cytokine that controls many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis and inflammation. TWEAK acts by binding to Fn14, a highly inducible cell-surface receptor that is linked to several intracellular signalling pathways, including the nuclear factor-κB (NF-κB) pathway. The TWEAK–Fn14 axis normally regulates various physiological processes, in particular it seems to play an important, beneficial role in tissue repair following acute injury. Furthermore, recent studies have indicated that TWEAK–Fn14 axis signalling may contribute to cancer, chronic autoimmune diseases and acute ischaemic stroke. This Review provides an overview of TWEAK–Fn14 axis biology and summarizes the available data supporting the proposal that both TWEAK and Fn14 should be considered as potential targets for the development of novel therapeutics.


The EMBO Journal | 2006

TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration

Mahasweta Girgenrath; Shawn Weng; Christine A. Kostek; Beth Browning; Monica Wang; Sharron A.N. Brown; Jeffrey A. Winkles; Jennifer S. Michaelson; Norm Allaire; Pascal Schneider; Martin L. Scott; Yen-Ming Hsu; Hideo Yagita; Richard A. Flavell; J. Miller; Linda C. Burkly; Timothy S. Zheng

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF‐κB activation and the expression of pro‐survival, pro‐proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro‐inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14‐deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell‐driven skeletal muscle regeneration, Fn14‐deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild‐type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

TWEAK Is an Endothelial Cell Growth and Chemotactic Factor That Also Potentiates FGF-2 and VEGF-A Mitogenic Activity

Patrick J. Donohue; Christine M. Richards; Sharron A.N. Brown; Heather N. Hanscom; John Buschman; Shobha Thangada; Timothy Hla; Mark S. Williams; Jeffrey A. Winkles

Objective—TWEAK, a member of the tumor necrosis factor superfamily, binds to the Fn14 receptor and stimulates angiogenesis in vivo. In this study, we investigated Fn14 gene expression in human endothelial cells (ECs) and examined the effect of TWEAK, added either alone or in combination with fibroblast growth factor-2 (FGF-2) or vascular endothelial growth factor-A (VEGF-A), on EC proliferation, migration, and survival in vitro. We also determined whether a soluble Fn14-Fc fusion protein could inhibit TWEAK biologic activity on ECs and investigated TWEAK signal transduction in ECs. Methods and Results—We found that both FGF-2 and VEGF-A could induce Fn14 mRNA expression in ECs. TWEAK was a mitogen for ECs, and this proliferative activity could be inhibited by an Fn14-Fc decoy receptor. Furthermore, TWEAK treatment activated several intracellular signaling pathways in ECs and potentiated FGF-2– and VEGF-A–stimulated EC proliferation. TWEAK also had EC chemotactic activity, but it did not promote EC survival. Conclusions—These results indicate that TWEAK is an EC growth and migration factor but not a survival factor. TWEAK can also enhance both FGF-2 and VEGF-A mitogenic activity on ECs. Thus, TWEAK may act alone as well as in combination with FGF-2 or VEGF-A to regulate pathological angiogenesis.


Cancer Research | 2006

Increased Fibroblast Growth Factor-Inducible 14 Expression Levels Promote Glioma Cell Invasion via Rac1 and Nuclear Factor-κB and Correlate with Poor Patient Outcome

Nhan L. Tran; Wendy S. McDonough; Benjamin A. Savitch; Shannon P. Fortin; Jeffrey A. Winkles; Marc Symons; Mitsutoshi Nakada; Heather E. Cunliffe; Galen Hostetter; Dominique B. Hoelzinger; Jessica L. Rennert; Jennifer S. Michaelson; Linda C. Burkly; Christopher A. Lipinski; Joseph C. Loftus; Luigi Mariani; Michael E. Berens

Glial tumors progress to malignant grades by heightened proliferation and relentless dispersion throughout the central nervous system. Understanding genetic and biochemical processes that foster these behaviors is likely to reveal specific and effective targets for therapeutic intervention. Our current report shows that the fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Forced Fn14 overexpression stimulates glioma cell migration and invasion, and depletion of Rac1 by small interfering RNA inhibits this cellular response. Activation of Fn14 signaling by the ligand TNF-like weak inducer of apoptosis (TWEAK) stimulates migration and up-regulates expression of Fn14; this TWEAK effect requires Rac1 and nuclear factor-kappaB (NF-kappaB) activity. The Fn14 promoter region contains NF-kappaB binding sites, which mediate positive feedback causing sustained overexpression of Fn14 and enduring glioma cell invasion. Furthermore, Fn14 gene expression levels increase with glioma grade and inversely correlate with patient survival. These results show that the Fn14 cascade operates as a positive feedback mechanism for elevated and sustained Fn14 expression. Such a feedback loop argues for aggressive targeting of the Fn14 axis as a unique and specific driver of glioma malignant behavior.


Oncogene | 2005

Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues

Jeffrey A. Winkles; Gregory F. Alberts

The four mammalian polo-like kinase (Plk) family members are critical regulators of cell cycle progression, mitosis, cytokinesis, and the DNA damage response. Research conducted to date has primarily investigated the expression patterns, structural features, substrates, and subcellular distribution of these important serine-threonine kinases. Here, we review the published data describing the regulation of Plk1, 2, 3, or 4 gene expression either during mammalian cell cycle progression or in tissue samples. These studies have demonstrated that the Plk family genes are differentially expressed following growth factor stimulation of quiescent fibroblasts. Furthermore, although Plk1 and Plk2 mRNA and protein levels are coordinately regulated during cell cycle progression, this is not the case for Plk3. In addition, the Plk1, 2 and 4 proteins have relatively short intracellular half-lives, but Plk3 is very stable. The Plk family genes are also differentially regulated in stressed cells; for example, when DNA-damaging agents are added to cycling cells, Plk1 expression decreases, but Plk2 and Plk3 expression increases. Finally, Plk1, 2, 3, and 4 are expressed to varying degrees in different human tissue types and it has been reported that Plk1 expression is increased and Plk3 expression is decreased in tumor specimens. These results indicate that the differential regulation of Plk family member gene expression is one cellular strategy for controlling Plk activity in mammalian cells.


American Journal of Pathology | 2005

A Soluble Fn14-Fc Decoy Receptor Reduces Infarct Volume in a Murine Model of Cerebral Ischemia

Manuel Yepes; Sharron A.N. Brown; Elizabeth Moore; Elizabeth P. Smith; Daniel A. Lawrence; Jeffrey A. Winkles

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily. TWEAK acts on responsive cells via binding to a small cell surface receptor named Fn14. Recent studies have demonstrated that TWEAK can stimulate numerous cellular responses including cell proliferation, migration, and proinflammatory molecule production, but the role of this cytokine in cardiovascular disease and stroke has not been established. The present study investigated whether TWEAK or Fn14 expression was regulated in a murine model of cerebral ischemia and whether TWEAK played a role in ischemia-mediated cell death. We found that TWEAK and Fn14 were expressed by primary mouse cerebral cortex-derived astrocytes and neurons cultured in vitro. Also, both the TWEAK and Fn14 proteins were present at elevated levels in the ischemic penumbra region after middle cerebral artery occlusion. Finally, we report that intracerebroventricular injection of a soluble Fn14-Fc decoy receptor immediately after middle cerebral artery occlusion significantly reduced infarct volume and the extent of microglial cell activation and apoptotic cell death in the ischemic penumbra. We conclude that the cytokine TWEAK may play an important role in ischemia-induced brain injury and that inhibition of TWEAK expression or function in the brain may represent a novel neuroprotective strategy to treat ischemic stroke.


The Journal of Neuroscience | 2005

Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Increases the Permeability of the Neurovascular Unit through Nuclear Factor-κB Pathway Activation

Rohini Polavarapu; Maria Carolina Gongora; Jeffrey A. Winkles; Manuel Yepes

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily. TWEAK acts on responsive cells via binding to a small cell-surface receptor named fibroblast growth factor-inducible-14 (Fn14). TWEAK can stimulate numerous cellular responses including cell proliferation, migration, and proinflammatory molecule production. The present study investigated whether TWEAK plays a role in the regulation of the permeability of the neurovascular unit (NVU). We found that intracerebral injection of TWEAK in wild-type mice induces activation of the nuclear factor-κB (NF-κB) pathway and matrix metalloproteinase-9 (MMP-9) expression in the brain with resultant disruption in the structure of the NVU and increase in the permeability of the blood-brain barrier (BBB). TWEAK did not increase MMP-9 activity or BBB permeability when injected into mice genetically deficient in the NF-κB family member p50. Furthermore, we report that inhibition of TWEAK activity during cerebral ischemia with an Fn14-Fc decoy receptor results in significant preservation of the integrity of the NVU with attenuation of cerebral ischemia-induced increase in the permeability of the BBB. We conclude that the cytokine TWEAK plays a role in the disruption of the structure and permeability of the NVU during physiological and pathological conditions.


Cancer Research | 2004

Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Overexpression in HEK293 Cells Promotes Tumor Growth and Angiogenesis in Athymic Nude Mice

David H. Ho; Hong Vu; Sharron A.N. Brown; Patrick J. Donohue; Heather N. Hanscom; Jeffrey A. Winkles

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily of structurally related cytokines. TWEAK acts on responsive cells via binding to a cell surface receptor named Fn14. Recent studies have demonstrated that TWEAK can stimulate numerous cellular responses including cell proliferation, migration, and proinflammatory molecule production. It has also been reported that TWEAK can stimulate blood vessel formation in the rat cornea angiogenesis assay, but it is presently unknown whether this cytokine could play a role in the pathological angiogenesis associated with human diseases such as cancer, rheumatoid arthritis, and diabetic retinopathy. In the present study we investigated whether TWEAK was expressed in human tumors and whether it could promote tumor growth and angiogenesis in vivo. TWEAK mRNA expression was detected in many tumor types by cDNA array hybridization analysis, and TWEAK protein expression was confirmed in human colon cancer tissue by immunohistochemistry. As an initial approach to address whether TWEAK might act as a tumor angiogenesis factor, we established several human embryonic kidney cell lines that constitutively secrete a soluble TWEAK protein and examined their growth properties in vitro and in vivo. We found that although TWEAK-overexpressing cells do not have a growth advantage in vitro, they form larger and more highly vascularized tumors in athymic mice when compared with control, vector-transfected cells. This result suggests that the TWEAK-Fn14 signaling system may be a potential regulator of human tumorigenesis.


Journal of Cerebral Blood Flow and Metabolism | 2007

TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia.

Xiaohui Zhang; Jeffrey A. Winkles; Maria Carolina Gongora; Rohini Polavarapu; Jennifer S. Michaelson; Kyungmin Hahm; Linda C. Burkly; Meyer Friedman; Xiao-Jiang Li; Manuel Yepes

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily. TWEAK acts via binding to a cell surface receptor named Fn14. To study the role of this cytokine in the regulation of the permeability of the neurovascular unit (NVU) during cerebral ischemia, TWEAK activity was inhibited in wild-type mice with a soluble Fn14-Fc decoy receptor administered either immediately or 1 h after middle cerebral artery occlusion (MCAO). Administration of Fn14-Fc decoy resulted in faster recovery of motor function and a 66.4%±10% decrease in Evans blue dye extravasation when treatment was administered immediately after MCAO and a 46.1%±13.1% decrease when animals were treated 1 h later (n=4, P<0.05). Genetic deficiency of Fn14 resulted in a 60%±12.8% decrease in the volume of the ischemic lesion (n=6, P<0.05), and a 87%±22% inhibition in Evans blue dye extravasation 48 h after the onset of the ischemic insult (n=6, P<0.005). Compared with control animals, treatment with Fn14-Fc decoy or genetic deficiency of Fn14 also resulted in a significant inhibition of nuclear factor-κB pathway activation, matrix metalloproteinase-9 activation and basement membrane laminin degradation after MCAO. These findings show that the cytokine TWEAK plays a role in the disruption of the structure of the NVU during cerebral ischemia and that TWEAK antagonism is a potential therapeutic strategy for acute cerebral ischemia.


Molecular Cancer Research | 2008

The Fibroblast Growth Factor–Inducible 14 Receptor Is Highly Expressed in HER2-Positive Breast Tumors and Regulates Breast Cancer Cell Invasive Capacity

Amanda L. Willis; Nhan L. Tran; Julie M. Chatigny; Nichole Charlton; Hong Vu; Sharron A.N. Brown; Michael A. Black; Wendy S. McDonough; Shannon P. Fortin; Joshua R. Niska; Jeffrey A. Winkles; Heather E. Cunliffe

Genomic characterization is beginning to define a molecular taxonomy for breast cancer; however, the molecular basis of invasion and metastasis remains poorly understood. We report a pivotal role for the fibroblast growth factor–inducible 14 (Fn14) receptor in this process. We examined whether Fn14 and its ligand tumor necrosis factor–like weak inducer of apoptosis (TWEAK) were expressed in breast tumors and whether deregulation of Fn14 levels affected malignant behavior of breast cancer cell lines. Analysis of TWEAK and Fn14 in publicly available gene expression data indicated that high Fn14 expression levels significantly correlated with several poor prognostic indicators (P < 0.05). Fn14 expression was highest in the HER2-positive/estrogen receptor–negative (HER2+/ER−) intrinsic subtype (P = 0.0008). An association between Fn14 and HER2 expression in breast tumors was confirmed by immunohistochemistry. Fn14 levels were elevated in invasive, ER− breast cancer cell lines. Overexpression of Fn14 in weakly invasive MCF7 and T47D cells resulted in a marked induction of invasion and activation of nuclear factor-κB (NF-κB) signaling. Ectopic expression of Fn14tCT, a Fn14 deletion mutant that cannot activate NF-κB signaling, was not able to induce invasion. Moreover, ectopic expression of Fn14tCT in highly invasive MDA-MB-231 cells reduced their invasive capability. RNA interference–mediated inhibition of Fn14 expression in both MDA-MB-231 and MDA-MB-436 cells reduced invasion. Expression profiling of the Fn14-depleted cells revealed deregulation of NF-κB activity. Our findings support a role for Fn14-mediated NF-κB pathway activation in breast tumor invasion and metastasis. (Mol Cancer Res 2008;6(5):725–34)

Collaboration


Dive into the Jeffrey A. Winkles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Rosenblum

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael E. Berens

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Harshil Dhruv

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hong Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Walter N. Hittelman

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge