Jeffrey Barminko
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey Barminko.
Biotechnology and Bioengineering | 2011
Jeffrey Barminko; Jae Hwan Kim; Seiji Otsuka; Rene Schloss; Martin Grumet; Martin L. Yarmush
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post‐spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post‐SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti‐inflammatory cytokines upon induction with the pro‐inflammatory factors, TNF‐α and IFN‐γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC‐macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague‐Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post‐injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post‐SCI indicated that as few as 5 × 104 encapsulated hMSC yielded increased numbers of CD206‐expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post‐CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection. Biotechnol. Bioeng. 2011;108: 2747–2758.
Current Drug Metabolism | 2009
Timothy J. Maguire; Eric Novik; Piyun Chao; Jeffrey Barminko; Yaakov Nahmias; Martin L. Yarmush; K.-C. Cheng
One of the fundamental challenges facing the development of new chemical entities within the pharmaceutical industry is the extrapolation of key in vivo parameters from in vitro cell culture assays and animal studies. Development of microscale devices and screening assays incorporating primary human cells can potentially provide better, faster and more efficient prediction of in vivo toxicity and clinical drug performance. With this goal in mind, large strides have been made in the area of microfluidics to provide in vitro surrogates that are designed to mimic the physiological architecture and dynamics. More recent advancements have been made in the development of in vitro analogues to physiologically-based pharmacokinetic (PBPK) models - a mathematical model that represents the body as interconnected compartments specific for a particular organ. In this review we highlight recent advancements in human hepatocyte microscale culture, and describe the next generation of integrated devices, whose potential allows for the high throughput assessment of drug metabolism, distribution and pharmacokinetics.
Biotechnology and Bioengineering | 2014
Jeffrey Barminko; Nir I. Nativ; Rene Schloss; Martin L. Yarmush
Understanding the regulatory networks which control specific macrophage phenotypes is essential in identifying novel targets to correct macrophage mediated clinical disorders, often accompanied by inflammatory events. Since mesenchymal stromal cells (MSCs) have been shown to play key roles in regulating immune functions predominantly via a large number of secreted products, we used a fractional factorial approach to streamline experimental evaluation of MSC mediated inflammatory macrophage regulation. Our macrophage reprogramming metrics, human bone marrow MSC attenuation of macrophage pro‐inflammatory M1 TNFα secretion and simultaneous enhanced expression of the M2 macrophage marker, CD206, were used as analysis endpoints. Objective evaluation of a panel of MSC secreted mediators indicated that PGE2 alone was sufficient in facilitating macrophage reprogramming, while IL4 only provided partial reprogramming. Inhibiting stromal cell PGE2 secretion with Indomethacin, reversed the macrophage reprogramming effect. PGE2 reprogramming was mediated through the EP4 receptor and indirectly through the CREB signaling pathway as GSK3 specific inhibitors induced M1 macrophages to express CD206. This reprogramming pathway functioned independently from the M1 suppression pathway, as neither CREB nor GSK3 inhibition reversed PGE2 TNF‐α secretion attenuation. In conclusion, fractional factorial experimental design identified stromal derived PGE2 as the factor most important in facilitating macrophage reprogramming, albeit via two unique pathways. Biotechnol. Bioeng. 2014;111: 2239–2251.
Drug Metabolism Letters | 2009
Piyun Chao; Jeffrey Barminko; Eric Novik; Yi Han; Timothy J. Maguire; K.-C. Cheng
Previously we have used human hepatocytes in suspension by measuring the parent loss for prediction of metabolic clearance according to a 1(st)-order kinetic model. In this study, we evaluated a novel integrative approach using plated human hepatocytes to include both uptake processes and metabolism in a single assay. Test articles were added in the medium, and the intrinsic clearance was determined based on the disappearance of the parent compound from the medium. Three different methods: direct, well-stirred, and parallel tube were tested for scaling purpose. With 30 randomly selected compounds with clinical clearance data, the scaled clearance showed reasonable linear correlation with r(2) values of 0.67, 0.72, and 0.70 for direct, well-stirred and parallel tube models, respectively. When human serum albumin (HSA) was added to the incubation medium a shift to lower in vitro clearance was observed for most of the compounds, suggesting that protein binding may have an effect on the metabolic clearance. In the presence of 4% of HSA, which is equivalent to the albumin concentration in the human plasma, the in vitro clearance data have the best prediction of human clearance when using the well-stirred method, followed by the parallel tube method and direct method. This study demonstrates the utility of using plated human hepatocyte as an integrated system for the prediction of human metabolic clearance. In addition, evaluation of the protein binding shift in the clearance showed that a significant number of compounds may not follow the equilibrium assumption according to the well-stirred model.
Biotechnology and Bioengineering | 2008
Eric J. Wallenstein; Jeffrey Barminko; Rene Schloss; Martin L. Yarmush
There is a critical need for new sources of hepatocytes, both clinically to provide support for patients with liver failure and in drug discovery for toxicity, metabolic and pharmacokinetic screening of new drug entities. We have reported previously a variety of methods for differentiating murine embryonic stem (ES) cells into hepatocyte-like cells. One major challenge of our work and others in the field has been the ability to selectively purify and enrich these cells from a heterogeneous population. Traditional approaches for inserting new genes (e.g., stable transfection, knock-in, retroviral transduction) involve permanent alterations in the genome. These approaches can lead to mutations and involve the extra costs and time of developing, validating and maintaining new cell lines. We have developed a transient gene delivery system that uses fluorescent gene reporters for purification of the cells. Following a transient transfection, the cells are purified through a fluorescence-activated cell sorter (FACS), re-plated in secondary culture and subsequent phenotypic analysis is performed. In an effort to test the ability of the reporters to work in a transient environment for our differentiation system, we engineered two non-viral plasmid reporters, the first driven by the mouse albumin enhancer/promoter and the second by the mouse cytochrome P450 7A1 (Cyp7A1) promoter. We optimized the transfection efficiency of delivering these genes into spontaneously differentiated ES cells and sorted independent fractions positive for each reporter 17 days after inducing differentiation. We found that cells sorted based on the Cyp7A1 promoter showed significant enrichment in terms of albumin secretion, urea secretion and cytochrome P450 1A2 detoxification activity as compared to enrichment garnered by the albumin promoter-based cell sort. Development of gene reporter systems that allow us to identify, purify and assess homogeneous populations of cells is important in better understanding stem cell differentiation pathways. And engineering cellular systems without making permanent gene changes will be critical for the generation of clinically acceptable cellular material in the future.
Biotechnology Progress | 2010
Eric J. Wallenstein; Jeffrey Barminko; Rene Schloss; Martin L. Yarmush
Control of genetic expression is a critical issue in the field of stem cell biology, where determining a cell fate or reprogramming adult somatic cells into pluripotent cells has become a common experimental practice. In turn, for these cells to have therapeutic clinical potential, techniques for controlling gene expression are needed that minimizes or eliminates the risk of oncogenesis and mutagenesis. Possible routes for achieving this outcome could come in the form of a transient nonviral gene delivery system. In this study, we improved the efficiency of transient gene delivery to differentiating murine embryonic stem (ES) cells via serum starvation for 3 days before transfection. The transient expression of a constitutively‐controlled plasmid increased from ∼50% (replated control) to ∼83% when transfected after 3 days of serum starvation but decreased to ∼28% when transfected after 3 days in normal high serum‐containing media. When probed with a liver‐specific reporter, Cyp7A1, expression increased from ∼1.4% (replated control) to ∼3.7% when transfected after 3 days of serum starvation but decreased to ∼0.7% when transfected after 3 days in high serum‐containing media. Cy3‐tagged oligonucleotides were used to rapidly quantify DNA uptake and predict ultimate transfection efficiency. This study suggests that modifications in media serum levels before transfection can have a profound effect on improving nonviral gene delivery.
Nano LIFE | 2013
Jean-Pierre Dollé; Jeffrey Barminko; Sai Veruva; Casey Moure; Rene Schloss; Martin L. Yarmush
Mesenchymal stromal cells (MSC) can promote tissue protection following injury, in part by modulating inflammatory cell responses. The aim of this study was to investigate the potential tissue protective properties of encapsulated MSCs (eMSC) in an organotypic injury model induced by fibronectin culture. MSC were encapsulated in alginate beads containing a network of nanopores, which segregate the cells from the extracapsular milieu, while still permitting diffusion into and out of the capsule. An increase in blood brain barrier permeability during pathological conditions permits the influx of blood plasma constituents that can be quite harmful to surrounding tissues. In particular, increased concentrations of fibronectin have been shown in a number of diseases and CNS traumas, co-localizing in areas of activated microglia. We observed over a 14-day period, a consistent increase in OHC degradation in the presence of fibronectin measured by a significant decrease in slice area, the breakdown in OHC pyramidal layers, and consistent cell death over the culture period. Microglial ionized calcium-binding adapter molecule 1 (IBA-1) expression remained elevated throughout the culture period with the majority found within the pyramidal layers. When eMSC were added to the cultures, a significant decrease in OHC degradation was observed as reflected by a reduction in OHC area shrinkage and in the amount of cell death. In the presence of eMSC, pyramidal layer structure was maintained and axonal extension from the periphery of the OHCs was observed. Therefore, MSC, delivered in a nanoporous alginate matrix, can modulate responses to injury by reversing fibronectin-induced OHC degradation.
Nano LIFE | 2015
Suneel Kumar; Joanne Babiarz; Sayantani Basak; Jae Hwan Kim; Jeffrey Barminko; Parry Mendapara; Rene Schloss; Martin L. Yarmush; Martin Grumet
Microencapsulation of mesenchymal stem cells (MSC) in alginate facilitates cell delivery, localization and survival, and modulates inflammation in vivo. However, we found that delivery of the widely used ~0.5 mm diameter encapsulated MSC (eMSC) by intrathecal injection into spinal cord injury (SCI) rats was highly variable. Injections of smaller (~0.2 mm) diameter eMSC into the lumbar spine were much more reproducible and they increased the anti-inflammatory macrophage response around the SCI site. We now report that injection of small eMSC >2 cm caudal from the rat SCI improved locomotion and myelin preservation 8 weeks after rat SCI versus control injections. Because preparation of sufficient quantities of small eMSC for larger studies was not feasible and injection of the large eMSC is problematic, we have developed a procedure to prepare medium-sized eMSC (~0.35 mm diameter) that can be delivered more reproducibly into the lumbar rat spine. The number of MSC incorporated/capsule in the medium sized capsules was ~5-fold greater than that in small capsules and the total yield of eMSC was ~20-fold higher than that for the small capsules. Assays with all three sizes of eMSC capsules showed that they inhibited TNF-α secretion from activated macrophages in co-cultures, suggesting no major difference in their anti-inflammatory activity in vitro. The in vivo activity of the medium-sized eMSC was tested after injecting them into the lumbar spine 1 day after SCI. Histological analyses 1 week later showed that eMSC reduced levels of activated macrophages measured by IB4 staining and increased white matter sparing in similar regions adjacent to the SCI site. The combined results indicate that ~0.35 mm diameter eMSC reduced macrophage inflammation in regions where white matter was preserved during critical early phases after SCI. These techniques enable preparation of eMSC in sufficient quantities to perform pre-clinical SCI studies with much larger numbers of subjects that will provide functional analyses of several critical parameters in rodent models for CNS inflammatory injury.
ASME 2010 Summer Bioengineering Conference, Parts A and B | 2010
Jean-Pierre Dollé; Jeffrey Barminko; Rene Schloss; Martin L. Yarmush
Traumatic Brain Injuries (TBI) affect up to 1.5 million people annually within the United States with as many as 250,000 being hospitalized and 50,000 dying [1]. TBI events occur when the brain experiences a sudden trauma such as a rapid deceleration of the brain that typically occurs during motor vehicle accidents. During rapid deceleration events, the brain is subjected to high inertial forces that can result in a shearing or elongation of axons that is commonly known as Diffuse Axonal Injury (DAI) [2,3].Copyright
ASME 2010 Summer Bioengineering Conference, Parts A and B | 2010
Jeffrey Barminko; Jean Pierre Dolle; Rene Schloss; Martin Grumet; Martin L. Yarmush
Mesenchymal stromal cells (MSC) have long been regarded as a cell source with the potential to provide therapies for various different tissue pathologies. They were originally identified for their ability to adhere to tissue culture plastic and gained favor due to their tremendous ability to propagate[1]. It was this finding as well as their ability to differentiate into lineages of mesoderm which have long made MSC a potential tool for autologous cellular replacement therapies [2, 3]. More recently, their cyto-protective role has been realized and been implicated in the benefit achieved in treating various different tissue pathologies. MSC have been found to secrete several different cytokines and growth factors in vitro. Furthermore, these factors can be modulated based on the environment MSC are exposed to. MSC have shown therapeutic benefits in models of GVHD, myocardial infarction, fulminant hepatic failure, central nervous system trauma and others, without any apparent cellular replacement. These advances propelled MSC to the fore front of potential cellular therapies and many are seeking to take advantage of their tissue protective properties. However, several draw backs in current methods of MSC implantation limit the ability to carry out safe and controlled clinical trials. Limitation with current MSC implantation approaches include; 1) directly transplanted MSCs exposed to the complex injury environment may be affected themselves early in the treatment processes, 2) MSC may also migrate to undesired tissue locations and 3) may differentiate into undesired end stage cells. These issues severally limit the translatability of MSC treatments in clinical settings; they make controlling experiments very difficult. There becomes a need to develop engineered methods for delivering these cells in a controlled manner. In order to circumvent these potential problems, we propose to use an alginate microencapsulation system as a vehicle for MSC delivery taking advantage of the soluble factors MSC provide.Copyright