Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey C. Cooper is active.

Publication


Featured researches published by Jeffrey C. Cooper.


NeuroImage | 2004

For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion.

Kevin N. Ochsner; Rebecca D. Ray; Jeffrey C. Cooper; Elaine R. Robertson; Sita Chopra; John D. E. Gabrieli; James J. Gross

Functional neuroimaging studies examining the neural bases of the cognitive control of emotion have found increased prefrontal and decreased amygdala activation for the reduction or down-regulation of negative emotion. It is unknown, however, (1) whether the same neural systems underlie the enhancement or up-regulation of emotion, and (2) whether altering the nature of the regulatory strategy alters the neural systems mediating the regulation. To address these questions using functional magnetic resonance imaging (fMRI), participants up- and down-regulated negative emotion either by focusing internally on the self-relevance of aversive scenes or by focusing externally on alternative meanings for pictured actions and their situational contexts. Results indicated (1a) that both up- and down-regulating negative emotion recruited prefrontal and anterior cingulate regions implicated in cognitive control, (1b) that amygdala activation was modulated up or down in accord with the regulatory goal, and (1c) that up-regulation uniquely recruited regions of left rostromedial PFC implicated in the retrieval of emotion knowledge, whereas down-regulation uniquely recruited regions of right lateral and orbital PFC implicated in behavioral inhibition. Results also indicated that (2) self-focused regulation recruited medial prefrontal regions implicated in internally focused processing, whereas situation-focused regulation recruited lateral prefrontal regions implicated in externally focused processing. These data suggest that both common and distinct neural systems support various forms of reappraisal and that which particular prefrontal systems modulate the amygdala in different ways depends on the regulatory goal and strategy employed.


Current Opinion in Neurology | 2005

Functional magnetic resonance imaging of reward prediction

Brian Knutson; Jeffrey C. Cooper

Purpose of reviewTechnical and conceptual advances in functional magnetic resonance imaging now allow visualization of real-time changes in oxygenation of deep subcortical regions, leading to rapid advances in scientific characterization of the neural substrates that underlie reward prediction in humans. Recent findingsNeuroimaging research over the past year has focused on determining the necessary neural substrates for reward prediction. SummaryWhile the orbitofrontal cortex has long been implicated in modality-specific reward representation, the ventral striatum (particularly the nucleus accumbens) may play a role in modality-independent representations of predicted reward. On the other hand, the mesial prefrontal cortex appears to play a role in representing reward prediction error and the dorsal caudate in linking reward to behavior. Theoretically, future studies will need to establish the specificity of these responses to reward versus punishment and anticipation versus outcome. Clinically, current findings suggest that patients can predict reward without a prefrontal cortex, but should experience difficulty correcting their behavior when reward predictions are violated.


Cognitive, Affective, & Behavioral Neuroscience | 2005

Individual differences in trait rumination and the neural systems supporting cognitive reappraisal

Rebecca D. Ray; Kevin N. Ochsner; Jeffrey C. Cooper; Elaine R. Robertson; John D. E. Gabrieli; James J. Gross

Cognitive reappraisal can alter emotional responses by changing one’s interpretation of a situation’s meaning. Functional neuroimaging has revealed that using cognitive reappraisal to increase or decrease affective responses involves left prefrontal activation and goal-appropriate increases or decreases in amygdala activation (Ochsner, Bunge, Gross, & Gabrieli, 2002; Ochsner, Ray, et al., 2004). The present study was designed to examine whether patterns of brain activation during reappraisal vary in relation to individual differences in trait rumination, which is the tendency to focus on negative aspects of one’s self or negative interpretations of one’s life. Individual differences in rumination correlated with increases in amygdala response when participants were increasing negative affect and with greater decreases in prefrontal regions implicated in self-focused thought when participants were decreasing negative affect. Thus, the propensity to ruminate may reflect altered recruitment of mechanisms that potentiate negative affect. These findings clarify relations between rumination and emotion regulation processes and may have important implications for mood and anxiety disorders.


Psychological Science | 2009

Bottom-Up and Top-Down Processes in Emotion Generation Common and Distinct Neural Mechanisms

Kevin N. Ochsner; Rebecca R. Ray; Brent L. Hughes; Kateri McRae; Jeffrey C. Cooper; Jochen Weber; John D. E. Gabrieli; James J. Gross

Emotions are generally thought to arise through the interaction of bottom-up and top-down processes. However, prior work has not delineated their relative contributions. In a sample of 20 females, we used functional magnetic resonance imaging to compare the neural correlates of negative emotions generated by the bottom-up perception of aversive images and by the top-down interpretation of neutral images as aversive. We found that (a) both types of responses activated the amygdala, although bottom-up responses did so more strongly; (b) bottom-up responses activated systems for attending to and encoding perceptual and affective stimulus properties, whereas top-down responses activated prefrontal regions that represent high-level cognitive interpretations; and (c) self-reported affect correlated with activity in the amygdala during bottom-up responding and with activity in the medial prefrontal cortex during top-down responding. These findings provide a neural foundation for emotion theories that posit multiple kinds of appraisal processes and help to clarify mechanisms underlying clinically relevant forms of emotion dysregulation.


NeuroImage | 2008

Valence and salience contribute to nucleus accumbens activation

Jeffrey C. Cooper; Brian Knutson

Different accounts of nucleus accumbens (NAcc) function have emphasized its role in representing either valence or salience during incentive anticipation. In an event-related FMRI experiment, we independently manipulated valence and salience by cuing participants to anticipate certain and uncertain monetary gains and losses. NAcc activation correlated with both valence and salience. On trials with certain outcomes, NAcc activation increased for anticipated gains and decreased for anticipated losses. On trials with uncertain outcomes, NAcc activation increased for both anticipated gains and losses but did not differ between them. These findings suggest that NAcc activation separately represents both valence and salience, consistent with its hypothesized role in appetitive motivation.


Journal of Cognitive Neuroscience | 2009

Neural systems supporting the control of affective and cognitive conflicts

Kevin N. Ochsner; Brent L. Hughes; Elaine R. Robertson; Jeffrey C. Cooper; John D. E. Gabrieli

Although many studies have examined the neural bases of controlling cognitive responses, the neural systems for controlling conflicts between competing affective responses remain unclear. To address the neural correlates of affective conflict and their relationship to cognitive conflict, the present study collected whole-brain fMRI data during two versions of the Eriksen flanker task. For these tasks, participants indicated either the valence (affective task) or the semantic category (cognitive task) of a central target word while ignoring flanking words that mapped onto either the same (congruent) or a different (incongruent) response as the target. Overall, contrasts of incongruent > congruent trials showed that bilateral dorsal ACC, posterior medial frontal cortex, and dorsolateral pFC were active during both kinds of conflict, whereas rostral medial pFC and left ventrolateral pFC were differentially active during affective or cognitive conflict, respectively. Individual difference analyses showed that separate regions of rostral cingulate/ventromedial pFC and left ventrolateral pFC were positively correlated with the magnitude of response time interference. Taken together, the findings that controlling affective and cognitive conflicts depends upon both common and distinct systems have important implications for understanding the organization of control systems in general and their potential dysfunction in clinical disorders.


NeuroImage | 2004

Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T

Alison R. Preston; Moriah E. Thomason; Kevin N. Ochsner; Jeffrey C. Cooper; Gary H. Glover

Spiral-in/out functional magnetic resonance imaging (fMRI) methods acquire one image before the echo time (TE) and a second image after TE during each scan. Weighted combination of the two images provides a time series with reduced susceptibility dropout in frontal and medial temporal regions as well as increased signal-to-noise ratio (SNR) in regions of uniform cortex. In this study, task activation with the spiral-in/out method was compared to that with conventional spiral-out acquisitions at two field strengths (1.5 and 3.0 T) using episodic memory encoding, verbal working memory, and affective processing tasks in eight human volunteers. With the conventional spiral-out sequence, greater signal dropout is observed in lateral and medial prefrontal, amygdalar, and medial temporal regions at 3 T relative to 1.5 T, whereas such dropout at 3 T is reduced or mitigated with the spiral-in/out method. Similarly, activation volumes for frontal, amygdalar, and medial temporal regions are reduced for spiral-out acquisitions relative to spiral-in/out, and this difference is more apparent at 3 T than at 1.5 T. In addition, significant regionally specific increases in Z scores are obtained with the spiral-in/out sequence relative to spiral-out acquisitions at both field strengths. It is concluded the spiral-in/out sequence may provide significant advantages over conventional spiral methods, especially at 3 T.


Social Cognitive and Affective Neuroscience | 2009

Available alternative incentives modulate anticipatory nucleus accumbens activation

Jeffrey C. Cooper; Nick G. Hollon; G. Elliott Wimmer; Brian Knutson

A reward or punishment can seem better or worse depending on what else might have happened. Little is known, however, about how neural representations of an anticipated incentive might be influenced by the available alternatives. We used event-related FMRI to investigate the activation in the nucleus accumbens (NAcc), while we varied the available alternative incentives in a monetary incentive delay task. Some task blocks included only uncertain gains and losses; others included the same uncertain gains and losses intermixed with certain gains and losses. The availability of certain gains and losses increased NAcc activation for uncertain losses and decreased the difference between uncertain gains and losses. We suggest that this pattern of activation can result from reference point changes across blocks, and that the worst available loss may serve as an important anchor for NAcc activation. These findings imply that NAcc activation represents anticipated incentive value relative to the current context of available alternative gains and losses.


Neuron | 2006

The Lure of the Unknown

Brian Knutson; Jeffrey C. Cooper

Using event-related fMRI, Bunzeck and Düzel show that midbrain regions putatively housing dopamine cell bodies activate more for novel pictures than for negative pictures, pictures requiring a motor response, or repeated pictures. These findings indicate that midbrain regions preferentially respond to novelty and suggest that novelty can serve as its own reward.


Science | 2004

Neural Systems Underlying the Suppression of Unwanted Memories

Michael C. Anderson; Kevin N. Ochsner; Brice A. Kuhl; Jeffrey C. Cooper; Elaine R. Robertson; Susan Gabrieli; Gary H. Glover; John D. E. Gabrieli

Collaboration


Dive into the Jeffrey C. Cooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. E. Gabrieli

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brent L. Hughes

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca D. Ray

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge