Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Axelrod is active.

Publication


Featured researches published by Jeffrey D. Axelrod.


Developmental Cell | 2003

A Second Canon

Michael T. Veeman; Jeffrey D. Axelrod; Randall T. Moon

More is becoming known about so-called noncanonical Wnt pathways that signal independently of beta-catenin. Here we review recent developments in both the functions and mechanisms of noncanonical Wnt signaling. We also discuss some unresolved and vexing questions. How many noncanonical Wnt pathways are there? How extensive are the parallels between Drosophila planar polarization and vertebrate convergence and extension? Last, we will outline some challenges and difficulties we foresee for this exciting but still very young field.


Cell | 2001

Drosophila Rho-Associated Kinase (Drok) Links Frizzled-Mediated Planar Cell Polarity Signaling to the Actin Cytoskeleton

Christopher G. Winter; Bruce Wang; Anna C. Ballew; Anne Royou; Roger Karess; Jeffrey D. Axelrod; Liqun Luo

Frizzled (Fz) and Dishevelled (Dsh) are components of an evolutionarily conserved signaling pathway that regulates planar cell polarity. How this signaling pathway directs asymmetric cytoskeletal reorganization and polarized cell morphology remains unknown. Here, we show that Drosophila Rho-associated kinase (Drok) works downstream of Fz/Dsh to mediate a branch of the planar polarity pathway involved in ommatidial rotation in the eye and in restricting actin bundle formation to a single site in developing wing cells. The primary output of Drok signaling is regulating the phosphorylation of nonmuscle myosin regulatory light chain, and hence the activity of myosin II. Drosophila myosin VIIA, the homolog of the human Usher Syndrome 1B gene, also functions in conjunction with this newly defined portion of the Fz/Dsh signaling pathway to regulate the actin cytoskeleton.


Science | 1996

Interaction between wingless and notch signaling pathways mediated by dishevelled

Jeffrey D. Axelrod; Kenji Matsuno; Spyros Artavanis-Tsakonas; Norbert Perrimon

In Drosophila, the Wingless and Notch signaling pathways function in many of the same developmental patterning events. Genetic analysis demonstrates that the dishevelled gene, which encodes a molecule previously implicated in implementation of the Wingless signal, interacts antagonistically with Notch and one of its known ligands, Delta. A direct physical interaction between Dishevelled and the Notch carboxyl terminus, distal to the cdc10/ankyrin repeats, suggests a mechanism for this interaction. It is proposed that Dishevelled, in addition to transducing the Wingless signal, blocks Notch signaling directly, thus providing a molecular mechanism for the inhibitory cross talk observed between these pathways.


Cell | 2002

Prickle Mediates Feedback Amplification to Generate Asymmetric Planar Cell Polarity Signaling

David Tree; Joshua M. Shulman; Raphaël Rousset; Matthew P. Scott; David Gubb; Jeffrey D. Axelrod

Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization. In the absence of Prickle, Frizzled and Dishevelled remain symmetrically distributed. Prickle localizes to the proximal side of pupal wing cells and binds the Dishevelled DEP domain, inhibiting Dishevelled membrane localization and antagonizing Frizzled accumulation. This activity is linked to Frizzled activity on the adjacent cell surface. Prickle therefore functions in a feedback loop that amplifies differences between Frizzled levels on adjacent cell surfaces.


Cell | 2002

Regulation of Frizzled by Fat-like Cadherins during Planar Polarity Signaling in the Drosophila Compound Eye

Chung-Hui Yang; Jeffrey D. Axelrod; Michael A. Simon

Planar polarity is evident in the coordinated orientation of ommatidia in the Drosophila eye. This process requires that the R3 photoreceptor precursor of each ommatidium have a higher level of Frizzled signaling than its neighboring R4 precursor. We show that two cadherin superfamily members, Fat and Dachsous, and the transmembrane/secreted protein Four-jointed play important roles in this process. Our data support a model in which the bias of Frizzled signaling between the R3/R4 precursors results from higher Fat function in the precursor cell closer to the equator, which becomes R3. We also provide evidence that positional information regulating Fat action is provided by graded expression of Dachsous across the eye and the action of Four-jointed, which is expressed in an opposing expression gradient and appears to modulate Dachsous function.


Nature | 2003

Fidelity in planar cell polarity signalling

Dali Ma; Chung-Hui Yang; Helen McNeill; Michael A. Simon; Jeffrey D. Axelrod

The polarity of Drosophila wing hairs displays remarkable fidelity. Each of the approximately 30,000 wing epithelial cells constructs an actin-rich prehair that protrudes from its distal vertex and points distally. The distal location and orientation of the hairs is virtually error free, thus forming a nearly perfect parallel array. This process is controlled by the planar cell polarity signalling pathway. Here we show that interaction between two tiers of the planar cell polarity signalling mechanism results in the observed high fidelity. The first tier, mediated by the cadherin Fat, dictates global orientation by transducing a directional signal to individual cells. The second tier, orchestrated by the 7-pass transmembrane receptor Frizzled, aligns each cells polarity with that of its neighbours through the action of an intercellular feedback loop, enabling polarity to propagate from cell to cell. We show that all cells need not respond correctly to the presumably subtle signal transmitted by Fat. Subsequent action of the Frizzled feedback loop is sufficient to align all the cells cooperatively. This economical system is therefore highly robust, and produces virtually error-free arrays.


Cell | 2008

Asymmetric Homotypic Interactions of the Atypical Cadherin Flamingo Mediate Intercellular Polarity Signaling

Wei-Shen Chen; Dragana Antic; Maja Matis; Catriona Y. Logan; Michael Povelones; Graham A. Anderson; Roel Nusse; Jeffrey D. Axelrod

Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, bind each other to create cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry.


Cold Spring Harbor Perspectives in Biology | 2009

Planar Cell Polarity Signaling: The Developing Cell’s Compass

Eszter K. Vladar; Dragana Antic; Jeffrey D. Axelrod

Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.


Seminars in Cell & Developmental Biology | 2002

A three-tiered mechanism for regulation of planar cell polarity

David Tree; Dali Ma; Jeffrey D. Axelrod

Some epithelial cells are polarized along an axis orthogonal to their apical-basal axes. Recent studies in Drosophila lead to the view that three classes of signaling molecules govern the planar cell polarity (PCP) pathway. The first class, or module, functions across whole tissues, providing directional information to individual cells. The second module, apparently shared by all planar polarized tissues, and related to the canonical Wnt signaling pathway, interprets the directional signal to produce subcellular asymmetries. The third modules are tissue specific, acting to translate subcellular asymmetry into the appropriate morphological manifestations in the different cell types.


Journal of Cell Biology | 2009

Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt–β-catenin and Wnt–RhoA–Rac1 pathways

Vinicio de Jesus Perez; Tero-Pekka Alastalo; Jenny Wu; Jeffrey D. Axelrod; John P. Cooke; Manuel R. Amieva; Marlene Rabinovitch

Mutations in bone morphogenetic protein (BMP) receptor II (BMPRII) are associated with pulmonary artery endothelial cell (PAEC) apoptosis and the loss of small vessels seen in idiopathic pulmonary arterial hypertension. Given the low penetrance of BMPRII mutations, abnormalities in other converging signaling pathways may be necessary for disease development. We hypothesized that BMPRII supports normal PAEC function by recruiting Wingless (Wnt) signaling pathways to promote proliferation, survival, and motility. In this study, we report that BMP-2, via BMPRII-mediated inhibition of GSK3-β, induces β-catenin (β-C) accumulation and transcriptional activity necessary for PAEC survival and proliferation. At the same time, BMP-2 mediates phosphorylated Smad1 (pSmad1) or, with loss of BMPRII, pSmad3-dependent recruitment of Disheveled (Dvl) to promote RhoA–Rac1 signaling necessary for motility. Finally, using an angiogenesis assay in severe combined immunodeficient mice, we demonstrate that both β-C– and Dvl-mediated RhoA–Rac1 activation are necessary for vascular growth in vivo. These findings suggest that the recruitment of both canonical and noncanonical Wnt pathways is required in BMP-2–mediated angiogenesis.

Collaboration


Dive into the Jeffrey D. Axelrod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge