Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew P. Scott is active.

Publication


Featured researches published by Matthew P. Scott.


Science | 1996

Human Homolog of patched, a Candidate Gene for the Basal Cell Nevus Syndrome

Ronald L Johnson; Alana Rothman; Jingwu Xie; Lisa V. Goodrich; John W. Bare; Anthony G. Quinn; Richard M. Myers; David R. Cox; Ervin H. Epstein; Matthew P. Scott

The basal cell nevus syndrome (BCNS) is characterized by developmental abnormalities and by the postnatal occurrence of cancers, especially basal cell carcinomas (BCCs), the most common human cancer. Heritable mutations in BCNS patients and a somatic mutation in a sporadic BCC were identified in a human homolog of the Drosophila patched (ptc) gene. The ptc gene encodes a transmembrane protein that in Drosophila acts in opposition to the Hedgehog signaling protein, controlling cell fates, patterning, and growth in numerous tissues. The human PTC gene appears to be crucial for proper embryonic development and for tumor suppression.


Nature | 2000

Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine.

Jussi Taipale; James K. Chen; Michael K. Cooper; Baolin Wang; Randall K. Mann; Ljiljana Milenkovic; Matthew P. Scott; Philip A. Beachy

Basal cell carcinoma, medulloblastoma, rhabdomyosarcoma and other human tumours are associated with mutations that activate the proto-oncogene Smoothened (SMO) or that inactivate the tumour suppressor Patched (PTCH). Smoothened and Patched mediate the cellular response to the Hedgehog (Hh) secreted protein signal, and oncogenic mutations affecting these proteins cause excess activity of the Hh response pathway. Here we show that the plant-derived teratogen cyclopamine, which inhibits the Hh response, is a potential ‘mechanism-based’ therapeutic agent for treatment of these tumours. We show that cyclopamine or synthetic derivatives with improved potency block activation of the Hh response pathway and abnormal cell growth associated with both types of oncogenic mutation. Our results also indicate that cyclopamine may act by influencing the balance between active and inactive forms of Smoothened.


Neuron | 1999

Control of Neuronal Precursor Proliferation in the Cerebellum by Sonic Hedgehog

Robert J. Wechsler-Reya; Matthew P. Scott

Cerebellar granule cells are the most abundant type of neuron in the brain, but the molecular mechanisms that control their generation are incompletely understood. We show that Sonic hedgehog (Shh), which is made by Purkinje cells, regulates the division of granule cell precursors (GCPs). Treatment of GCPs with Shh prevents differentiation and induces a potent, long-lasting proliferative response. This response can be inhibited by basic fibroblast growth factor or by activation of protein kinase A. Blocking Shh function in vivo dramatically reduces GCP proliferation. These findings provide insight into the mechanisms of normal growth and tumorigenesis in the cerebellum.


Cell | 1992

brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2

John W. Tamkun; Renate Deuring; Matthew P. Scott; Mark Kissinger; Angela M. Pattatucci; Thomas C. Kaufman; James A. Kennison

The brahma (brm) gene is required for the activation of multiple homeotic genes in Drosophila. Loss-of-function brm mutations suppress mutations in Polycomb, a repressor of homeotic genes, and cause developmental defects similar to those arising from insufficient expression of the homeotic genes of the Antennapedia and Bithorax complexes. The brm gene encodes a 1638 residue protein that is similar to SNF2/SWI2, a protein involved in transcriptional activation in yeast, suggesting possible models for the role of brm in the transcriptional activation of homeotic genes. In addition, both brm and SNF2 contain a 77 amino acid motif that is found in other Drosophila, yeast, and human regulatory proteins and may be characteristic of a new family of regulatory proteins.


Science | 2010

Interdependence of cell growth and gene expression: origins and consequences.

Matthew P. Scott; Carl W. Gunderson; Eduard M. Mateescu; Zhongge Zhang; Terence Hwa

Theory of Growth Control Although quantitative studies of growth in bacterial cultures have been made for over 50 years, the relationship between cell proliferation and gene expression has not been clear. Scott et al. (p. 1099; see the Perspective by Lerman and Palsson) have revealed that mass per cell exponentially increased with linear increases in growth rate and that ribosome abundance increased linearly with growth rate depending on the rate of translation. Hence, the systems properties of the biological processes involved in growth can be derived without any molecular understanding of their basis and can be used to establish fundamental properties for the design of biotechnological procedures. Simple mathematical models describe the relationship between bacterial replication, cellular resources, and protein expression. In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.


Developmental Cell | 2004

A Genome-Wide Study of Gene Activity Reveals Developmental Signaling Pathways in the Preimplantation Mouse Embryo

Q. Tian Wang; Karolina Piotrowska; Maria Anna Ciemerych; Ljiljana Milenkovic; Matthew P. Scott; Ronald W. Davis; Magdalena Zernicka-Goetz

The preimplantation development of the mammalian embryo encompasses a series of critical events: the transition from oocyte to embryo, the first cell divisions, the establishment of cellular contacts, the first lineage differentiation-all the first subtle steps toward a future body plan. Here, we use microarrays to explore gene activity during preimplantation development. We reveal robust and dynamic patterns of stage-specific gene activity that fall into two major phases, one up to the 2-cell stage (oocyte-to-embryo transition) and one after the 4-cell stage (cellular differentiation). The mouse oocyte and early embryo express components of multiple signaling pathways including those downstream of Wnt, BMP, and Notch, indicating that conserved regulators of cell fate and pattern formation are likely to function at the earliest embryonic stages. Overall, these data provide a detailed temporal profile of gene expression that reveals the richness of signaling processes in early mammalian development.


Cell | 1989

The Drosophila patched gene encodes a putative membrane protein required for segmental patterning

Joan E. Hooper; Matthew P. Scott

The patched (ptc) gene is one of several segment polarity genes required for correct patterning within every segment of Drosophila. The absence of ptc gene function causes a transformation of the fate of cells in the middle part of each segment so that they form pattern elements characteristic of cells positioned around the segment border. Analysis of the mutant phenotype demonstrates that both segment and parasegment borders are included in the duplicated pattern of ptc mutants. We have cloned the ptc gene and deduced that the product is a 1286 amino acid protein with at least seven putative transmembrane alpha helices. ptc RNA is expressed in embryos in broad stripes of segmental periodicity that later split into two stripes per segment primordium. The pattern of expression does not directly predict the transformation seen in ptc mutant embryos, suggesting that ptc participates in cell interactions that establish pattern within the segment.


Nature Medicine | 1999

Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice

Michelle Aszterbaum; John H. Epstein; Anthony E. Oro; Vanja C. Douglas; Philip E. LeBoit; Matthew P. Scott; Ervin H. Epstein

Basal cell carcinomas, the commonest human skin cancers, consistently have abnormalities of the hedgehog signaling pathway and often have PTCH gene mutations. We report here that Ptch+/– mice develop primordial follicular neoplasms resembling human trichoblastomas, and that exposure to ultraviolet radiation or ionizing radiation results in an increase in the number and size of these tumors and a shift in their histologic features so that they more closely resemble human basal cell carcinoma. The mouse basal cell carcinomas and trichoblastoma-like tumors resemble human basal cell carcinomas in their loss of normal hemidesmosomal components, presence of p53 mutations, frequent loss of the normal remaining Ptch allele, and activation of hedgehog target gene transcription. The Ptch mutant mice provide the first mouse model, to our knowledge, of ultraviolet and ionizing radiation-induced basal cell carcinoma-like tumors, and also demonstrate that Ptch inactivation and hedgehog target gene activation are essential for basal cell carcinoma tumorigenesis.


Cell | 2002

Prickle Mediates Feedback Amplification to Generate Asymmetric Planar Cell Polarity Signaling

David Tree; Joshua M. Shulman; Raphaël Rousset; Matthew P. Scott; David Gubb; Jeffrey D. Axelrod

Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization. In the absence of Prickle, Frizzled and Dishevelled remain symmetrically distributed. Prickle localizes to the proximal side of pupal wing cells and binds the Dishevelled DEP domain, inhibiting Dishevelled membrane localization and antagonizing Frizzled accumulation. This activity is linked to Frizzled activity on the adjacent cell surface. Prickle therefore functions in a feedback loop that amplifies differences between Frizzled levels on adjacent cell surfaces.


Science | 2010

A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution

Qicong Hu; Ljiljana Milenkovic; Hua Jin; Matthew P. Scott; Maxence V. Nachury; Elias T. Spiliotis; W. James Nelson

Staying in Place The primary cilium is found on nearly all mammalian cells and is a key regulatory organelle for proper signal transduction throughout development and in adults. Extracellular signal transduction, such as that promoted by Sonic hedgehog (Shh), requires the enrichment of receptors and downstream signaling components in the ciliary membrane. Intraflagellar transport is involved in selective trafficking of proteins into the cilium, but it is not known how these proteins are retained in the cilium. It has been speculated that a diffusion barrier exists at the base of the ciliary membrane. Now, Hu et al. (p. 436, published online 17 June) demonstrate directly that a membrane diffusion barrier is indeed present at the base of the ciliary membrane. SEPT2, a member of the septin family that also forms a diffusion barrier in budding yeast and mammalian sperm membranes, localizes to the base of the ciliary membrane and is required for ciliogenesis, ciliary membrane protein localization, and cilium-dependent Shh signaling. Signaling proteins are retained in the cilium by a diffusion barrier created by a member of the septin family. In animal cells, the primary cilium transduces extracellular signals through signaling receptors localized in the ciliary membrane, but how these ciliary membrane proteins are retained in the cilium is unknown. We found that ciliary membrane proteins were highly mobile, but their diffusion was impeded at the base of the cilium by a diffusion barrier. Septin 2 (SEPT2), a member of the septin family of guanosine triphosphatases that form a diffusion barrier in budding yeast, localized at the base of the ciliary membrane. SEPT2 depletion resulted in loss of ciliary membrane protein localization and Sonic hedgehog signal transduction, and inhibited ciliogenesis. Thus, SEPT2 is part of a diffusion barrier at the base of the ciliary membrane and is essential for retaining receptor-signaling pathways in the primary cilium.

Collaboration


Dive into the Matthew P. Scott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald L Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean B. Carroll

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Xiaojing Zhang

University of Texas System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge