Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nira Datta is active.

Publication


Featured researches published by Nira Datta.


Nature | 2006

Global landscape of protein complexes in the yeast Saccharomyces cerevisiae

Nevan J. Krogan; Gerard Cagney; Haiyuan Yu; Gouqing Zhong; Xinghua Guo; Alexandr Ignatchenko; Joyce Li; Shuye Pu; Nira Datta; Aaron Tikuisis; Thanuja Punna; José M. Peregrín-Alvarez; Michael Shales; Xin Zhang; Michael Davey; Mark D. Robinson; Alberto Paccanaro; James E. Bray; Anthony Sheung; Bryan Beattie; Dawn Richards; Veronica Canadien; Atanas Lalev; Frank Mena; Peter Y. Wong; Andrei Starostine; Myra M. Canete; James Vlasblom; Samuel Wu; Chris Orsi

Identification of protein–protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization–time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein–protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein–protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Molecular Cell | 2003

A Snf2 Family ATPase Complex Required for Recruitment of the Histone H2A Variant Htz1

Nevan J. Krogan; Michael-Christopher Keogh; Nira Datta; Chika Sawa; Owen Ryan; Huiming Ding; Robin Haw; Jeffrey Pootoolal; Amy Hin Yan Tong; Veronica Canadien; Dawn Richards; Xiaorong Wu; Andrew Emili; Timothy R. Hughes; Stephen Buratowski; Jack Greenblatt

Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the histone H2A variant Htz1 and three encoded components of a novel 13 protein complex, SWR-C, containing the Snf2 family ATPase, Swr1. The SWR-C also copurified with Htz1 and Bdf1, a TFIID-interacting protein that recognizes acetylated histone tails. Deletions of the genes encoding Htz1 and seven nonessential SWR-C components caused a similar spectrum of synthetic growth defects when combined with deletions of 384 genes involved in transcription, suggesting that Htz1 and SWR-C belong to the same pathway. We show that recruitment of Htz1 to chromatin requires the SWR-C. Moreover, like Htz1 and Bdf1, the SWR-C promotes gene expression near silent heterochromatin.


Nature | 2006

A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery

Michael Christopher Keogh; Jung Ae Kim; Michael Downey; Jeffrey Fillingham; Dipanjan Chowdhury; Jacob C. Harrison; Megumi Onishi; Nira Datta; Sarah Galicia; Andrew Emili; Judy Lieberman; Xuetong Shen; Stephen Buratowski; James E. Haber; Daniel Durocher; Jack Greenblatt; Nevan J. Krogan

One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create γH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating γH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of γH2AX in vivo and efficiently dephosphorylates γH2AX in vitro. γH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets γH2AX after its displacement from DNA. The dephosphorylation of γH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.


Molecular Cell | 2004

High-definition macromolecular composition of yeast RNA-processing complexes.

Nevan J. Krogan; Wen-Tao Peng; Gerard Cagney; Mark D. Robinson; Robin Haw; Gouqing Zhong; Xinghua Guo; Xin Zhang; Veronica Canadien; Dawn Richards; Bryan Beattie; Atanas Lalev; Wen Zhang; Armaity P. Davierwala; Sanie Mnaimneh; Andrei Starostine; Aaron Tikuisis; Jörg Grigull; Nira Datta; James E. Bray; Timothy R. Hughes; Andrew Emili; Jack Greenblatt

A remarkably large collection of evolutionarily conserved proteins has been implicated in processing of noncoding RNAs and biogenesis of ribonucleoproteins. To better define the physical and functional relationships among these proteins and their cognate RNAs, we performed 165 highly stringent affinity purifications of known or predicted RNA-related proteins from Saccharomyces cerevisiae. We systematically identified and estimated the relative abundance of stably associated polypeptides and RNA species using a combination of gel densitometry, protein mass spectrometry, and oligonucleotide microarray hybridization. Ninety-two discrete proteins or protein complexes were identified comprising 489 different polypeptides, many associated with one or more specific RNA molecules. Some of the pre-rRNA-processing complexes that were obtained are discrete sub-complexes of those previously described. Among these, we identified the IPI complex required for proper processing of the ITS2 region of the ribosomal RNA primary transcript. This study provides a high-resolution overview of the modular topology of noncoding RNA-processing machinery.


Cell | 2003

A Panoramic View of Yeast Noncoding RNA Processing

Wen Tao Peng; Mark D. Robinson; Sanie Mnaimneh; Nevan J. Krogan; Gerard Cagney; Quaid Morris; Armaity P. Davierwala; Jörg Grigull; Xueqi Yang; Wen Zhang; Nicholas Mitsakakis; Owen Ryan; Nira Datta; Vladimir Jojic; Chris Pal; Veronica Canadien; Dawn Richards; Bryan Beattie; Lani F. Wu; Steven J. Altschuler; Sam T. Roweis; Brendan J. Frey; Andrew Emili; Jack Greenblatt; Timothy R. Hughes

Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.


Journal of Cellular Biochemistry | 2007

Investigating the in vivo activity of the DeaD protein using protein–protein interactions and the translational activity of structured chloramphenicol acetyltransferase mRNAs

Gareth Butland; Nevan J. Krogan; Jianhua Xu; Wenhong Yang; Hiroyuki Aoki; Joyce Li; Naden T. Krogan; Javier A. Menendez; Gerard Cagney; Gholam C. Kiani; Mathew G. Jessulat; Nira Datta; Ivan Ivanov; Mounir G. AbouHaidar; Andrew Emili; Jack Greenblatt; M. Clelia Ganoza; Ashkan Golshani

Here, we report the use of an in vivo protein–protein interaction detection approach together with focused follow‐up experiments to study the function of the DeaD protein in Escherichia coli. In this method, functions are assigned to proteins based on the interactions they make with others in the living cell. The assigned functions are further confirmed using follow‐up experiments. The DeaD protein has been characterized in vitro as a putative prokaryotic factor required for the formation of translation initiation complexes on structured mRNAs. Although the RNA helicase activity of DeaD has been demonstrated in vitro, its in vivo activity remains controversial. Here, using a method called sequential peptide affinity (SPA) tagging, we show that DeaD interacts with certain ribosomal proteins as well as a series of other nucleic acid binding proteins. Focused follow‐up experiments provide evidence for the mRNA helicase activity of the DeaD protein complex during translation initiation. DeaD overexpression compensates for the reduction of the translation activity caused by a structure placed at the initiation region of a chloramphenicol acetyltransferase gene (cat) used as a reporter. Deletion of the deaD gene, encoding DeaD, abolishes the translation activity of the mRNA with an inhibitory structure at its initiation region. Increasing the growth temperature disrupts RNA secondary structures and bypasses the DeaD requirement. These observations suggest that DeaD is involved in destabilizing mRNA structures during translation initiation. This study also provides further confirmation that large‐scale protein–protein interaction data can be suitable to study protein functions in E. coli. J. Cell. Biochem. 100: 642–652, 2007.


Nature | 2006

Corrigendum: A phosphatase complex that dephosphorylates |[gamma]|H2AX regulates DNA damage checkpoint recovery

Michael-Christopher Keogh; Jung-Ae Kim; Michael Downey; Jeffrey Fillingham; Dipanjan Chowdhury; Jacob C. Harrison; Megumi Onishi; Nira Datta; Sarah Galicia; Andrew Emili; Judy Lieberman; Xuetong Shen; Stephen Buratowski; James E. Haber; Daniel Durocher; Jack Greenblatt; Nevan J. Krogan

This corrects the article DOI: 10.1038/nature04384


Nature | 2006

Erratum: A phosphatase complex that dephosphorylates γh2AX regulates DNA damage checkpoint recovery (Nature (2006) 439 (497-501))

Michael Christopher Keogh; Jung Ae Kim; Michael Downey; Jeffrey Fillingham; Dipanjan Chowdhury; Jacob C. Harrison; Megumi Onishi; Nira Datta; Sarah Galicia; Andrew Emili; Judy Lieberman; Xuetong Shen; Stephen Buratowski; James E. Haber; Daniel Durocher; Jack Greenblatt; Nevan J. Krogan

This corrects the article DOI: 10.1038/nature04384


Nature | 2006

Erratum: Corrigendum: A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery

Michael-Christopher Keogh; Jung-Ae Kim; Michael Downey; Jeffrey Fillingham; Dipanjan Chowdhury; Jacob C. Harrison; Megumi Onishi; Nira Datta; Sarah Galicia; Andrew Emili; Judy Lieberman; Xuetong Shen; Stephen Buratowski; James E. Haber; Daniel Durocher; Jack Greenblatt; Nevan J. Krogan

This corrects the article DOI: 10.1038/nature04384


Proceedings of the National Academy of Sciences of the United States of America | 2004

Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4

Nevan J. Krogan; Kristin Baetz; Michael-Christopher Keogh; Nira Datta; Chika Sawa; Trevor C. Y. Kwok; Natalie J. Thompson; Michael Davey; Jeff Pootoolal; Timothy Hughes; Andrew Emili; Stephen Buratowski; Philip Hieter; Jack Greenblatt

Collaboration


Dive into the Nira Datta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard Cagney

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge