Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey J. Buler is active.

Publication


Featured researches published by Jeffrey J. Buler.


Ecology | 2007

A MULTI‐SCALE EXAMINATION OF STOPOVER HABITAT USE BY BIRDS

Jeffrey J. Buler; Frank R. Moore; Stefan Woltmann

Most of our understanding of habitat use by migrating land birds comes from studies conducted at single, small spatial scales, which may overemphasize the importance of intrinsic habitat factors, such as food availability, in shaping migrant distributions. We believe that a multi-scale approach is essential to assess the influence of factors that control en route habitat use. We determined the relative importance of eight variables, each operating at a habitat-patch, landscape, or regional spatial scale, in explaining the differential use of hardwood forests by Nearctic-Neotropical land birds during migration. We estimated bird densities through transect surveys at sites near the Mississippi coast during spring and autumn migration within landscapes with variable amounts of hardwood forest cover. At a regional scale, migrant density increased with proximity to the coast, which was of moderate importance in explaining bird densities, probably due to constraints imposed on migrants when negotiating the Gulf of Mexico. The amount of hardwood forest cover at a landscape scale was positively correlated with arthropod abundance and had the greatest importance in explaining densities of all migrants, as a group, during spring, and of insectivorous migrants during autumn. Among landscape scales ranging from 500 m to 10 km radius, the densities of migrants were, on average, most strongly and positively related to the amount of hardwood forest cover within a 5 km radius. We suggest that hardwood forest cover at this scale may be an indicator of habitat quality that migrants use as a cue when landing at the end of a migratory flight. At the patch scale, direct measures of arthropod abundance and plant community composition were also important in explaining migrant densities, whereas habitat structure was of little importance. The relative amount of fleshy-fruited trees was positively related and was the most important variable explaining frugivorous migrant density during autumn. Although constraints extrinsic to habitat had a moderate role in explaining migrant distributions, our results are consistent with the view that food availability is the ultimate factor shaping the distributions of birds during stopover.


The Auk | 2000

PREDATION OF NATURAL AND ARTIFICIAL NESTS IN A SOUTHERN PINE FOREST

Jeffrey J. Buler; Robert B. Hamilton

Abstract We compared predation of artificial open-cup nests baited with Japanese Quail (Coturnix coturnix) eggs with predation of natural open-cup nests during 1997 and 1998 in a Louisiana pine forest to assess the assumption that predation of artificial nests is an index to that of natural nests. Cameras were placed at randomly selected natural and artificial nests in shrubs to document predators. Predation at artificial-nest plots was positively correlated with predation at adjacent natural-nest plots overall, although inconsistently by year. Artificial nests were almost exclusively depredated by corvids, but quail eggs were too large to be broken by small-mouthed mammalian predators. American Crows (Corvus brachyrhynchos) appeared to be important predators of natural nests. Predation of natural nests was independent of predation at other nests, but predation of artificial nests by crows was spatially and temporally clumped. Crows may have learned the location of artificial-nest plots, and predation of artificial nests increased significantly between years, contrary to predation of natural nests. Predation of artificial nests did not exhibit seasonal variation like that of natural nests. Overall, predation of artificial shrub nests did not accurately mimic that of natural shrub nests. Changes in procedures for artificial-nest studies that reduce spatially and temporally clumped predation and prevent the exclusion of small-mouthed predators could increase the suitability of such studies as a model for predation at natural nests. However, the difference in labor effort between studies of natural nests versus artificial nests that incorporate the changes we recommend likely would disappear, which would reduce the attractiveness of artificial-nest studies as an experimental model.


IEEE Transactions on Geoscience and Remote Sensing | 2009

Quantifying Bird Density During Migratory Stopover Using Weather Surveillance Radar

Jeffrey J. Buler; Robert H. Diehl

Increasingly, data from weather surveillance radars are being used by biologists investigating the ecology and behavior of birds, insects, and bats in the aerosphere. Unfortunately, these radars quantify echoes caused by layered biological targets such as migrating birds in a manner that introduces bias in radar measures. We investigated the performance of a bias-adjustment algorithm that adjusts radar measures for vertical variation of reflectivity, nonstandard beam refraction, and spatial displacement of radar targets. We evaluated the efficacies of four variations of this algorithm by their ability to increase correspondence between radar reflectivity measured at two weather radar sites and the ground density of migrating birds measured during two autumn seasons and two spring seasons among 24 hardwood forest sites along the northern coast of the Gulf of Mexico. The algorithm integrated close-range reflectivity data from the five lowest elevation angle sweeps to derive high-resolution vertical profiles of reflectivity (VPRs) that closely corresponded to the observed vertical target density profiles based on a vertically oriented portable radar. The radar reflectivity of birds aloft near the onset of migratory flight was positively correlated with the bird density on the ground. All four radar data adjustment schemes that we tested produced significant improvement in the accuracy of bird density estimates relative to unadjusted radar data. In general, adjusting reflectivity based solely on the VPRs derived using observed refractive conditions yielded the most accurate radar-based estimates of bird density.


The Condor | 2014

Radar analysis of fall bird migration stopover sites in the northeastern U.S.

Jeffrey J. Buler; Deanna K. Dawson

ABSTRACT The national network of weather surveillance radars (WSR-88D) detects flying birds and is a useful remote-sensing tool for ornithological study. We used data collected during fall 2008 and 2009 by 16 WSR-88D radars in the northeastern U.S. to quantify the spatial distribution of landbirds during migratory stopover. We geo-referenced estimates based on radar reflectivity, of the density of migrants aloft at their abrupt evening exodus from daytime stopover sites, to the approximate locations from which they emerged. We classified bird stopover use by the magnitude and variation of radar reflectivity across nights; areas were considered “important” stopover sites for conservation if bird density was consistently high. We developed statistical models that predict potentially important stopover sites across the region, based on land cover, ground elevation, and geographic location. Large areas of regionally important stopover sites were located along the coastlines of Long Island Sound, throughout the Delmarva Peninsula, in areas surrounding Baltimore and Washington, along the western edge of the Adirondack Mountains, and within the Appalachian Mountains of southwestern Virginia and West Virginia. Locally important stopover sites generally were associated with deciduous forests embedded within landscapes dominated by developed or agricultural lands, or near the shores of major water bodies. Preserving or enhancing patches of natural habitat, particularly deciduous forests, in developed or agricultural landscapes and along major coastlines could be a priority for conservation plans addressing the stopover requirements of migratory landbirds in the northeastern U.S. Our maps of important stopover sites can be used to focus conservation efforts and can serve as a sampling frame for fieldwork to validate radar observations or for ecological studies of landbirds on migratory stopover.


Ecological Applications | 2015

A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording

Kyle G. Horton; W. Gregory Shriver; Jeffrey J. Buler

There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly traffic rates across nights. The strength of these correlations generally increased throughout the night, peaking 2-3 hours before morning twilight. Given the convergence of measures by different tools at this time, we suggest that researchers consider sampling flight activity in the hours before morning twilight when differences due to detection biases among sampling tools appear to be minimized.


PLOS ONE | 2012

Mapping wintering waterfowl distributions using weather surveillance radar.

Jeffrey J. Buler; Lori A. Randall; Joseph P. Fleskes; Wylie C. Barrow; Tianna Bogart; Daria Kluver

The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of −5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.


Journal of Wildlife Management | 2011

An improved multi-scale approach to modeling habitat occupancy of northern bobwhite†

Kenneth R. Duren; Jeffrey J. Buler; William David Jones; Christopher K. Williams

ABSTRACT Predicting species presence requires knowledge of detection of individuals, scale of model variables, model selection uncertainty, and spatial autocorrelation. Our objective was to incorporate recent modeling advances to predict potential habitat occupancy of northern bobwhite (Colinus virginianus). From 15 May—15 August 2008 and 2009, we conducted repeat-visit surveys at 360 sites within Delaware to sample presence of bobwhite. We randomly selected half the data to model scale-dependent relationships of bobwhite presence with metrics of landscape- and site-scale habitat composition and configuration. The final averaged habitat-occupancy model fit the remainder testing dataset with an area under the receiver operating characteristic curve value of 0.62. At the site scale, bobwhite presence was negatively related to interspersion and juxtaposition of early successional habitat (ESH; grassland and shrubland), ESH to forest edge density, and agriculture to forest edge density, though relative effect sizes were weak to moderate after accounting for model selection uncertainty. At the landscape scale, bobwhite presence was negatively related to patch cohesion of human development within 2.5 km and positively related to patch cohesion of ESH within 2.0 km, with both variables exerting strong effects. Bobwhite presence was also weakly and positively related to percentage of shrubland habitat within 1.0 km of the sampling point. We applied our habitat occupancy model to map the predicted presence of breeding bobwhite within the Delmarva Peninsula, USA. The modeling results and distribution map will provide guidance to State and Federal private land management programs in the Mid-Atlantic to identify where habitat management efforts will be most effective. Our methodology can also serve as a basis for future habitat modeling of bobwhite and other grassland—shrubland species across their range.


The Condor | 2017

How do en route events around the Gulf of Mexico influence migratory landbird populations

Emily B. Cohen; Wylie C. Barrow; Jeffrey J. Buler; Jill L. Deppe; Andrew Farnsworth; Peter P. Marra; Scott R. McWilliams; David W. Mehlman; R. Randy Wilson; Mark S. Woodrey; Frank R. Moore

ABSTRACT Habitats around the Gulf of Mexico (GOM) provide critical resources for Nearctic–Neotropical migratory landbirds, the majority of which travel across or around the GOM every spring and fall as they migrate between temperate breeding grounds in North America and tropical wintering grounds in the Caribbean and Central and South America. At the same time, ecosystems in the GOM are changing rapidly, with unknown consequences for migratory landbird populations, many of which are experiencing population declines. In general, the extent to which events encountered en route limit migratory bird populations is not well understood. At the same time, information from weather surveillance radar, stable isotopes, tracking, eBird, and genetic datasets is increasingly available to address many of the unanswered questions about bird populations that migrate through stopover and airspace habitats in the GOM. We review the state of the science and identify key research needs to understand the impacts of en route events around the GOM region on populations of intercontinental landbird migrants that breed in North America, including: (1) distribution, timing, and habitat associations; (2) habitat characteristics and quality; (3) migratory connectivity; and (4) threats to and current conservation status of airspace and stopover habitats. Finally, we also call for the development of unified and comprehensive long-term monitoring guidelines and international partnerships to advance our understanding of the role of habitats around the GOM in supporting migratory landbird populations moving between temperate breeding grounds and wintering grounds in Mexico, Central and South America, and the Caribbean.


Ecology Letters | 2018

Artificial light at night confounds broad‐scale habitat use by migrating birds

James D. McLaren; Jeffrey J. Buler; Tim Schreckengost; Jaclyn A. Smolinsky; Matthew E. Boone; E. Emiel van Loon; Deanna K. Dawson; Eric L. Walters

With many of the worlds migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.


Global Change Biology | 2017

Seasonal associations with urban light pollution for nocturnally migrating bird populations

Frank A. La Sorte; Daniel Fink; Jeffrey J. Buler; Andrew Farnsworth; Sergio A. Cabrera-Cruz

The spatial extent and intensity of artificial light at night (ALAN) has increased worldwide through the growth of urban environments. There is evidence that nocturnally migrating birds are attracted to ALAN, and there is evidence that nocturnally migrating bird populations are more likely to occur in urban areas during migration, especially in the autumn. Here, we test if urban sources of ALAN are responsible, at least in part, for these observed urban associations. We use weekly estimates of diurnal occurrence and relative abundance for 40 nocturnally migrating bird species that breed in forested environments in North America to assess how associations with distance to urban areas and ALAN are defined across the annual cycle. Migratory bird populations presented stronger than expected associations with shorter distances to urban areas during migration, and stronger than expected association with higher levels of ALAN outside and especially within urban areas during migration. These patterns were more pronounced during autumn migration, especially within urban areas. Outside of the two migration periods, migratory bird populations presented stronger than expected associations with longer distances to urban areas, especially during the nonbreeding season, and weaker than expected associations with the highest levels of ALAN outside and especially within urban areas. These findings suggest that ALAN is associated with higher levels of diurnal abundance along the boundaries and within the interior of urban areas during migration, especially in the autumn when juveniles are undertaking their first migration journey. These findings support the conclusion that urban sources of ALAN can broadly effect migratory behavior, emphasizing the need to better understand the implications of ALAN for migratory bird populations.

Collaboration


Dive into the Jeffrey J. Buler's collaboration.

Top Co-Authors

Avatar

Frank R. Moore

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wylie C. Barrow

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert H. Diehl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Deanna K. Dawson

Patuxent Wildlife Research Center

View shared research outputs
Top Co-Authors

Avatar

Solny A. Adalsteinsson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge