Jeffrey L. Wong
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey L. Wong.
Immunological Investigations | 2012
Nataša Obermajer; Jeffrey L. Wong; Robert P. Edwards; Kunle Odunsi; Kirsten B. Moysich; Pawel Kalinski
Myeloid-derived suppressor cells (MDSCs) are critical mediators of tumor-associated immune suppression, with their numbers and activity strongly increased in most human cancers and animal models. MDSCs suppress anti-tumor immunity through multiple mechanisms, including the manipulation of arginine and tryptophan metabolism by such factors as arginase (Arg), inducible nitric oxide synthase (iNOS/NOS2), and indoleamine-2,3-dioxygenase (IDO). Prostaglandin E2 (PGE2), a mediator of chronic inflammation and tumor progression, has emerged as a key molecule in MDSC biology. PGE2 promotes MDSC development and their induction by additional factors, directly suppresses T cell immune responses and participates in the induction of other MDSC-associated suppressive factors, including Arg, iNOS and IDO. It further promotes MDSC recruitment to tumor environments through the local induction of CXCL12/SDF-1 and the induction and stabilization of the CXCL12 receptor, CXCR4, on tumor-associated MDSCs. The establishment of a positive feedback loop between PGE2 and cyclooxygenase 2 (COX-2), the key regulator of PGE2 synthesis, stabilizes the MDSC phenotype and is required for their suppressive function. The central role of PGE2 in MDSC biology provides for a feasible target for counteracting MDSC-mediated immune suppression in cancer.
Journal of Experimental Medicine | 2013
Nataša Obermajer; Jeffrey L. Wong; Robert P. Edwards; Kong Chen; Melanie J. Scott; Shabaana A. Khader; Jay K. Kolls; Kunle Odunsi; Timothy R. Billiar; Pawel Kalinski
MDSC-derived nitric oxide supports the development of Th17 cells in ovarian cancer dependent on the induction of endogenous NOS2 and the cGMP–cGK pathway in Th17 cells.
Journal of Immunotherapy | 2011
Jeffrey L. Wong; Robbie B. Mailliard; Stergios J. Moschos; Howard D. Edington; Michael T. Lotze; John M. Kirkwood; Pawel Kalinski
Natural killer (NK) cells have been shown to mediate important immunoregulatory “helper” functions in addition to their cytolytic activity. In particular, NK cells are capable of preventing maturation-related dendritic cell (DC) “exhaustion,” inducing the development of “type-1 polarized” mature DCs (DC1) with an enhanced ability to produce interleukin (IL)-12p70, a factor essential for type-1 immunity and effective anticancer responses. Here we show that the NK cell-mediated type-1 polarization of DCs can be applied in the context of patients with advanced cancer to enhance the efficacy of DCs in inducing tumor-specific cytotoxic T lymphocytes. NK cells isolated from patients with late-stage (stage III and IV) melanoma responded with high interferon-&ggr; production and the induction of type-1-polarized DCs on exposure to defined combinations of stimulatory agents, including interferon-&agr; and IL-18. The resulting DCs showed strongly-enhanced IL-12p70 production on subsequent T-cell interaction compared with immature DCs (average of 19-fold enhancement) and nonpolarized IL-1&bgr;/TNF-&agr;/IL-6/PGE2-matured “standard” DCs (average of 215-fold enhancement). Additional inclusion of polyinosinic: polycytidylic acid during NK-DC cocultures optimized the expression of CD80, CD86, CD40, and HLA-DR on the resulting NKDC1, increased their CCR7-mediated migratory responsiveness to the lymph node-associated chemokine CCL21, and further enhanced their IL-12-producing capacity. When compared in vitro with immature DCs and nonpolarized standard DCs, NKDC1 were superior in inducing functional melanoma-specific cytotoxic T lymphocytes capable of recognizing multiple melanoma-associated antigens and killing melanoma cells. These results indicate that the helper function of NK cells can be used in clinical settings to improve the effectiveness of DC-based cancer vaccines.
Cancer Immunology, Immunotherapy | 2008
Jinghai Wen; Xiaoyun Zhu; Bai Liu; Lijing You; Lin Kong; Hyung-il Lee; Kaiping Han; Jeffrey L. Wong; Peter R. Rhode; Hing C. Wong
We have previously reported that a single-chain T cell receptor/IL-2 fusion protein (scTCR-IL2) exhibits potent targeted antitumor activity in nude mice bearing human tumor xenografts that display cognate peptide/HLA complexes. In this study, we further explore the mechanism of action of this molecule. We compared the biological activities of c264scTCR-IL2, a scTCR-IL2 protein recognizing the aa264–272 peptide of human p53, with that of MART-1scTCR-IL2, which recognizes the MART-1 melanoma antigen (aa27–35). In vitro studies showed that c264scTCR-IL2 and MART-1scTCR-IL2 were equivalent in their ability to bind cell-surface IL-2 receptors and stimulate NK cell responses. In mice, MART-1scTCR-IL2 was found to have a twofold longer serum half-life than c264scTCR-IL2. However, despite its shorter serum half-life, c264scTCR-IL2 showed significantly better antitumor activity than MART-1scTCR-IL2 against p53+/HLA-A2+ tumor xenografts. The more potent antitumor activity of c264scTCR-IL2 correlated with an enhanced capacity to promote NK cell infiltration into tumors. Similar differences in antigen-dependent tumor infiltration were observed with activated splenocytes pre-treated in vitro with c264scTCR-IL2 or MART-1scTCR-IL2 and then transferred into p53+/HLA-A2+ tumor bearing recipients. The data support a model where c264scTCR-IL2 activates immune cells to express IL-2 receptors. Following stable interactions with cell-surface IL-2 receptors, c264scTCR-IL2 fusion molecule enhances the trafficking of immune cells to tumors displaying target peptide/HLA complexes where the immune cells mediate antitumor effects. Thus, this type of fusion molecule could be used directly as a targeted immunotherapeutic or in adoptive cell transfer approaches to activate and improve the anti-cancer activities of immune cells by providing them with pre-selected antigen recognition capability.
OncoImmunology | 2013
Jeffrey L. Wong; Ravikumar Muthuswamy; David L. Bartlett; Pawel Kalinski
The effective accumulation and interaction of mature dendritic cells (DCs) and naïve T cells within lymph nodes (LNs), which are driven by the CCR7-CCL19/CCL21 chemokine axis, are critical for the induction of adaptive T-cell immunity. Human natural killer (NK) cells activated by interleukin (IL)-18 exhibit a unique ‘helper’ activity in promoting productive DC-T cell interactions, inducing DC maturation and shifting DC-primed T-cell responses toward a TH1 polarization. Here, we demonstrate that such IL-18-activated ‘helper’ NK cells uniquely stimulate DCs to produce high levels of CCL19 through tumor necrosis factor α (TNFα) and interferon γ (IFNγ), a process that relies on secondary NK-cell activation by additional inflammatory signals including IFNα, IL-15, IL-12 and IL-2. DCs activated by helper NK cells not only promote the efficient CCR7-mediated recruitment of naïve CD8+ T cells, but also stimulate their expansion and expression of granzyme B. Using an ex vivo explant culture system based on LNs isolated from colorectal cancer patients, we found that CCL19 is upregulated in human tumor-associated lymphoid tissues treated with helper NK cell-stimulating factors. Our findings demonstrate the ability of 2 signal-activated helper NK cells to promote the production of the DC- and naïve/memory T cell-attracting chemokine CCL19 in LNs, and provide a rationale for the therapeutic application of IL-18-containing ‘combinatorial adjuvants’ to facilitate the induction of antitumor immune responses.
Thrombosis and Haemostasis | 2009
Jin-An Jiao; Andrew B. Kelly; Ulla M. Marzec; Esperanza Liliana Nieves; Jorge Acevedo; Martin Burkhardt; Ana Edwards; Xiaoyun Zhu; Pierre-Andre Chavaillaz; Alice Wong; Jeffrey L. Wong; Jack O. Egan; Dean P. Taylor; Peter R. Rhode; Hing C. Wong
Tissue factor (TF) antagonists targeting the factor VII (FVII) binding domain have been shown to interrupt acute vascular thrombus formation without impairing haemostasis in non-human primates. In this study, we evaluate whether a human/mouse chimeric monoclonal antibody (ALT-836, formerly known as Sunol-cH36) blocking the factor X/factor IX (FX/FIX) binding site of tissue factor could achieve similar clinical benefits in an arterial thrombosis model induced by surgical endarterectomy in chimpanzees. In this model, sequential surgical endarterectomies on right and left superficial femoral arteries were performed 30 days apart in five chimpanzees. A bolus (1 mg/kg) of ALT-836 was injected intravenously immediately preceding the restoration of flow in the endarterectomised femoral artery. Pre-surgical labelling of autologous platelets using (111)In-Oxine and post-surgical gamma camera imaging of (111)In-platelet deposition at endarterectomy sites was performed. The manipulated arterial segments were harvested for patency analysis 30 days following surgery. The results indicate that ALT-836 was highly effective at reducing acute vascular thrombosis, with no significant variations in surgical blood loss and template-bleeding time in the treated group compared to the control animals. These data suggest that ALT-836 is an effective and safe antithrombotic agent in preventing TF-initiated vascular thrombogenesis without compromising haemostasis.
Cancer immunology research | 2016
Jeffrey L. Wong; Nataša Obermajer; Kunle Odunsi; Robert P. Edwards; Pawel Kalinski
IFNγ and TNFα are primarily antitumor mediators, but unexpectedly synergized to enhance multiple pathways of immune suppression, using COX2 activation as the intermediary. This mechanism limits type-1 antitumor immunity and provides a rationale for targeting the COX2–PGE2 axis. Maintenance of CTL-, Th1-, and NK cell–mediated type-1 immunity is essential for effective antitumor responses. Unexpectedly, we observed that the critical soluble mediators of type-1 immune effector cells, IFNγ and TNFα, synergize in the induction of cyclooxygenase 2 (COX2), the key enzyme in prostaglandin (PG)E2 synthesis, and the subsequent hyperactivation of myeloid-derived suppressor cells (MDSC) within the tumor microenvironment (TME) of ovarian cancer patients. MDSC hyperactivation by type-1 immunity and the resultant overexpression of indoleamine 2,3-dioxygenase (IDO), inducible nitric oxide synthase (iNOS/NOS2), IL10, and additional COX2 result in strong feedback suppression of type-1 immune responses. This paradoxical immune suppression driven by type-1 immune cell activation was found to depend on the synergistic action of IFNγ and TNFα, and could not be reproduced by either of these factors alone. Importantly, from a therapeutic standpoint, these negative feedback limiting type-1 responses could be eliminated by COX2 blockade, allowing amplification of type-1 immunity in the ovarian cancer TME. Our data demonstrate a new mechanism underlying the self-limiting nature of type-1 immunity in the human TME, driven by the synergistic induction of COX2 by IFNγ and TNFα, and provide a rationale for targeting the COX2–PGE2 axis to enhance the effectiveness of cancer immunotherapies. Cancer Immunol Res; 4(4); 303–11. ©2016 AACR.
Journal for ImmunoTherapy of Cancer | 2014
Jeffrey L. Wong; Nataša Obermajer; Ravikumar Muthuswamy; Robert P. Edwards; Kunle Odunsi; David L. Bartlett; Pawel Kalinski
Type-1 immune responses, mediated by IFNγ and TNFα-producing CTLs, Th1, and NK cells, are essential for effective anti-tumor immunity. Despite recent advances in the induction and stabilization of these responses by cancer immunotherapies, the clinical success of these approaches remain limited. Here, we report that the activation of type-1 immunity within the human tumor microenvironment (TME) initiates IFNγ- and TNFα-dependent counter-regulation, driven by amplification of prostaglandin E2 (PGE2) and the key regulator of PGE2 synthesis, cyclooxygenase 2 (COX2). We demonstrate that type-1-activated CTLs and NK cells induce IFNγ/TNFα-mediated over-expression of indoleamine 2,3-dioxygenase (IDO), inducible nitric oxide synthase (iNOS/NOS2), IL-10, and COX2 by tumor-associated myeloid-derived suppressor cells (MDSCs). Importantly, this self-limiting suppressive feedback driven by type-1 immunity could be eliminated not only by neutralization of IFNγ and TNFα, the factors critically required for the anti-tumor activity of immune effector cells, but also by COX2 blockade, which counteracted the IFNγ/TNFα-driven enhancement of all other suppressive factors, amplifying the therapeutic potential of intratumoral type-1 immunity. Our data demonstrate an intrinsic mechanism underlying the self-limiting character of type-1 immunity within the human TME, and provide rationale for targeting the COX2-PGE2 axis to enhance desirable type-1 responses for cancer immunotherapy.
Journal for ImmunoTherapy of Cancer | 2013
Nataša Obermajer; Jeffrey L. Wong; Robert P. Edwards; Kong Chen; Melanie J. Scott; Shabaana A. Khader; Jay K. Kolls; Kunle Odunsi; Timothy R. Billiar; Pawel Kalinski
Th17 cells play reciprocal roles in different forms and at different stages of cancer. We report that the presence of Th17 cells in ovarian cancer ascites correlates with local expression of nitric oxide synthase-2 (NOS2). Furthermore, the development of RORγt+IL-23R+IL-17+ Th17 cells from human naive-, memory- or tumor-infiltrating CD4+ T cells critically depends on NO and endogenous NOS2 induced in CD4+ T cells by Th17-inducing cytokines (IL-1β/IL-6/IL-23) or by cancer-associated IL-1β/IL-6/IL-23/NO-producing MDSCs. Inhibition of NOS2 or its downstream cGMP/cGK signaling pathway abolishes de novo induction of Th17 cells. Moreover, even short-term blockade of NOS/cGMP suppresses the IL-17 production by established Th17 cells isolated from ovarian cancer patients, demonstrating the novel key role of NOS/cGMP in Th17 cell physiology and providing for new therapeutic targets to manipulate Th17- and NOS/cGMP-associated immunity in precancerous lesions and advanced cancer.
Cancer Research | 2013
Jeffrey L. Wong; Erik Berk; Robert P. Edwards; Pawel Kalinski