Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shabaana A. Khader is active.

Publication


Featured researches published by Shabaana A. Khader.


Nature Immunology | 2007

IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge.

Shabaana A. Khader; Guy K. Bell; John E. Pearl; Jeffrey J. Fountain; Javier Rangel-Moreno; Garth E Cilley; Fang Shen; Sheri M. Eaton; Sarah L. Gaffen; Susan L. Swain; Richard M. Locksley; Laura Haynes; Troy D. Randall; Andrea M. Cooper

Interferon-γ is key in limiting Mycobacterium tuberculosis infection. Here we show that vaccination triggered an accelerated interferon-γ response by CD4+ T cells in the lung during subsequent M. tuberculosis infection. Interleukin 23 (IL-23) was essential for the accelerated response, for early cessation of bacterial growth and for establishment of an IL-17-producing CD4+ T cell population in the lung. The recall response of the IL-17-producing CD4+ T cell population occurred concurrently with expression of the chemokines CXCL9, CXCL10 and CXCL11. Depletion of IL-17 during challenge reduced the chemokine expression and accumulation of CD4+ T cells producing interferon-γ in the lung. We propose that vaccination induces IL-17-producing CD4+ T cells that populate the lung and, after challenge, trigger the production of chemokines that recruit CD4+ T cells producing interferon-γ, which ultimately restrict bacterial growth.


Journal of Immunology | 2005

IL-23 Compensates for the Absence of IL-12p70 and Is Essential for the IL-17 Response during Tuberculosis but Is Dispensable for Protection and Antigen-Specific IFN-γ Responses if IL-12p70 Is Available

Shabaana A. Khader; John E. Pearl; Kaori Sakamoto; Leigh Gilmartin; Guy K. Bell; Dawn M. Jelley-Gibbs; Nico Ghilardi; Fred deSauvage; Andrea M. Cooper

IL-12p70 induced IFN-γ is required to control Mycobacterium tuberculosis growth; however, in the absence of IL-12p70, an IL-12p40-dependent pathway mediates induction of IFN-γ and initial bacteriostatic activity. IL-23 is an IL-12p40-dependent cytokine containing an IL-12p40 subunit covalently bound to a p19 subunit that is implicated in the induction of CD4 T cells associated with autoimmunity and inflammation. We show that in IL-23 p19-deficient mice, mycobacterial growth is controlled, and there is no diminution in either the number of IFN-γ-producing Ag-specific CD4 T cells or local IFN-γ mRNA expression. Conversely, there is an almost total loss of both IL-17-producing Ag-specific CD4 T cells and local production of IL-17 mRNA in these mice. The absence of IL-17 does not alter expression of the antimycobacterial genes, NO synthase 2 and LRG-47, and the absence of IL-23 or IL-17, both of which are implicated in mediating inflammation, fails to substantially affect the granulomatous response to M. tuberculosis infection of the lung. Despite this redundancy, IL-23 is required to provide a moderate level of protection in the absence of IL-12p70, and this protection correlates with a requirement for IL-23 in the IL-12p70-independent induction of Ag-specific, IFN-γ-producing CD4 T cells. We also show that IL-23 is required for the induction of an IL-17-producing Ag-specific phenotype in naive CD4 T cells in vitro and that absence of IL-12p70 promotes an increase in the number of IL-17-producing Ag-specific CD4 T cells both in vitro and in vivo.


Mucosal Immunology | 2009

Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa

Shabaana A. Khader; Sarah L. Gaffen; Jay K. Kolls

T helper type 17 (Th17) cells are a distinct lineage of T cells that produce the effector molecules IL-17, IL-17F, IL-21, and IL-22. Although the role of Th17 cells in autoimmunity is well documented, there is growing evidence that the Th17 lineage and other interleukin (IL)-17-producing cells are critical for host defense against bacterial, fungal, and viral infections at mucosal surfaces. Here we summarize recent progress in our understanding of the function of IL-17-producing cells as a bridge between innate and adaptive immunity against infectious diseases at the mucosa.


Journal of Immunology | 2006

Cutting Edge: IFN-γ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection

Andrea Cruz; Shabaana A. Khader; Egídio Torrado; Alexandra G. Fraga; John E. Pearl; Jorge Pedrosa; Andrea M. Cooper; António G. Castro

T cell responses are important to the control of infection but are deleterious if not regulated. IFN-γ-deficient mice infected with mycobacteria exhibit enhanced accumulation of activated effector T cells and neutrophils within granulomatous lesions. These cells do not control bacterial growth and compromise the integrity of the infected tissue. We show that IFN-γ-deficient mice have increased numbers of IL-17-producing T cells following infection with Mycobacterium bovis bacille Calmette Guérin. Furthermore, exogenous IFN-γ increases IL-12 and decreases IL-23 production by bacille Calmette Guérin-infected bone marrow-derived dendritic cells and reduces the frequency of IL-17-producing T cells induced by these bone marrow-derived dendritic cells. These data support the hypothesis that, during mycobacterial infection, both IFN-γ- and IL-17-producing T cells are induced, but that IFN-γ serves to limit the IL-17-producing T cell population. This counterregulation pathway may be an important factor in limiting mycobacterially associated immune-mediated pathology.


Journal of Experimental Medicine | 2006

Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection

Shabaana A. Khader; Santiago Partida-Sanchez; Guy K. Bell; Dawn M. Jelley-Gibbs; Susan L. Swain; John E. Pearl; Nico Ghilardi; Frederic Desauvage; Frances E. Lund; Andrea M. Cooper

Migration of dendritic cells (DCs) to the draining lymph node (DLN) is required for the activation of naive T cells. We show here that migration of DCs from the lung to the DLN after Mycobacterium tuberculosis (Mtb) exposure is defective in mice lacking interleukin (IL)-12p40. This defect compromises the ability of IL-12p40–deficient DCs to activate naive T cells in vivo; however, DCs that express IL-12p40 alone can activate naive T cells. Treatment of IL-12p40–deficient DCs with IL-12p40 homodimer (IL-12(p40)2) restores Mtb-induced DC migration and the ability of IL-12p40–deficient DCs to activate naive T cells. These data define a novel and fundamental role for IL-12p40 in the pathogen-induced activation of pulmonary DCs.


Immunity | 2009

Interleukin-17 Is Required for T Helper 1 Cell Immunity and Host Resistance to the Intracellular Pathogen Francisella tularensis

Yinyao Lin; Shane Ritchea; Alison J. Logar; Samantha Slight; Michelle Nicole Messmer; Javier Rangel-Moreno; Lokesh Guglani; John F. Alcorn; Heather Strawbridge; Sang Mi Park; Reiko M. Onishi; Nikki Nyugen; Michael J. Walter; Derek A. Pociask; Troy D. Randall; Sarah L. Gaffen; Yoichiro Iwakura; Jay K. Kolls; Shabaana A. Khader

The importance of T helper type 1 (Th1) cell immunity in host resistance to the intracellular bacterium Francisella tularensis is well established. However, the relative roles of interleukin (IL)-12-Th1 and IL-23-Th17 cell responses in immunity to F. tularensis have not been studied. The IL-23-Th17 cell pathway is critical for protective immunity against extracellular bacterial infections. In contrast, the IL-23-Th17 cell pathway is dispensable for protection against intracellular pathogens such as Mycobacteria. Here we show that the IL-23-Th17 pathway regulates the IL-12-Th1 cell pathway and was required for protective immunity against F.tularensis live vaccine strain. We show that IL-17A, but not IL-17F or IL-22, induced IL-12 production in dendritic cells and mediated Th1 responses. Furthermore, we show that IL-17A also induced IL-12 and interferon-gamma production in macrophages and mediated bacterial killing. Together, these findings illustrate a biological function for IL-17A in regulating IL-12-Th1 cell immunity and host responses to an intracellular pathogen.


Nature Immunology | 2011

The development of inducible bronchus-associated lymphoid tissue depends on IL-17.

Javier Rangel-Moreno; Damian M. Carragher; Maria de la Luz Garcia-Hernandez; Ji Young Hwang; Kim Kusser; Louise Hartson; Jay K. Kolls; Shabaana A. Khader; Troy D. Randall

Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in nonlymphoid organs after local infection or inflammation. However, the initial events that promote this process remain unknown. Here we show that iBALT formed in mouse lungs as a consequence of pulmonary inflammation during the neonatal period. Although we found CD4+CD3− lymphoid tissue–inducer cells (LTi cells) in neonatal lungs, particularly after inflammation, iBALT was formed in mice that lacked LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4+ T cells was essential for the formation of iBALT. IL-17 acted by promoting lymphotoxin-α-independent expression of the chemokine CXCL13, which was important for follicle formation. Our results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.


Immunological Reviews | 2008

The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis

Andrea M. Cooper; Shabaana A. Khader

Summary: Tuberculosis (TB) results from an interaction between a potent immune response and a chronically persistent pathogen. The ability of Mycobacterium tuberculosis (Mtb) to induce a strong immune response while being able to resist the ability of the host to clear bacteria provides an excellent tool with which to investigate the role of specific cytokine pathways on the induction, expansion, and control of the effector T‐cell response. In this review, the role of interleukin‐12p40 (IL‐12p40), IL‐12p70, IL‐23, and IL‐27 in the immune response to Mtb are described. We show that IL‐12(p40)2 acts to mediate the activation of dendritic cells to become responsive to homeostatic chemokines. We also show that IL‐12p70 is required for the optimal interferon‐γ (IFN‐γ) T‐cell response, which is required for control of Mtb growth. IL‐23 can induce IFN‐γ responses in the lung if IL‐12 is not present, but its major role is in supporting the IL‐17 response within the lung. Neither IL‐23 nor IL‐17 is required for early control of Mtb in the lung. IL‐23 and IL‐17, however, can be instrumental in vaccine‐induced protection. Finally, IL‐27 limits protective immunity in the lung, but it is also required for long‐term survival. These cytokines are therefore key players in the immune response to TB.


Cytokine | 2008

IL-23 and IL-17 in tuberculosis

Shabaana A. Khader; Andrea M. Cooper

Tuberculosis is a chronic disease requiring the constant expression of cellular immunity to limit bacterial growth. The constant expression of immunity also results in chronic inflammation, which requires regulation. While IFN-gamma-producing CD4+ T helper cells (Th1) are required for control of bacterial growth they also initiate and maintain a mononuclear inflammatory response. Other T cell subsets are induced by Mycobacterium tuberculosis (Mtb) infection including those able to produce IL-17 (Th17). IL-17 is a potent inflammatory cytokine capable of inducing chemokine expression and recruitment of cells to parenchymal tissue. Both the IL-17 and the Th17 response to Mtb are largely dependent upon IL-23. Although both Th17 and Th1 cells are induced following primary infection with Mtb, the protective response is significantly altered in the absence of Th1 cells but not in the absence of Th17. In contrast, in vaccinated animals the absence of memory Th17 cells results in loss of both the accelerated memory Th1 response and protection. Th1 and Th17 responses cross-regulate each other during mycobacterial infection and this may be important for immunopathologic consequences not only in tuberculosis but also other mycobacterial infections.


Journal of Immunology | 2011

Influenza A Inhibits Th17-Mediated Host Defense against Bacterial Pneumonia in Mice

Anupa Kudva; Erich V. Scheller; Keven M. Robinson; Christopher Crowe; Sun Mi Choi; Samantha Slight; Shabaana A. Khader; Patricia J. Dubin; Richard I. Enelow; Jay K. Kolls; John F. Alcorn

Staphylococcus aureus is a significant cause of hospital and community acquired pneumonia and causes secondary infection after influenza A. Recently, patients with hyper-IgE syndrome, who often present with S. aureus infections of the lung and skin, were found to have mutations in STAT3, required for Th17 immunity, suggesting a potential critical role for Th17 cells in S. aureus pneumonia. Indeed, IL-17R−/− and IL-22−/− mice displayed impaired bacterial clearance of S. aureus compared with that of wild-type mice. Mice challenged with influenza A PR/8/34 H1N1 and subsequently with S. aureus had increased inflammation and decreased clearance of both virus and bacteria. Coinfection resulted in greater type I and II IFN production in the lung compared with that with virus infection alone. Importantly, influenza A coinfection resulted in substantially decreased IL-17, IL-22, and IL-23 production after S. aureus infection. The decrease in S. aureus-induced IL-17, IL-22, and IL-23 was independent of type II IFN but required type I IFN production in influenza A-infected mice. Furthermore, overexpression of IL-23 in influenza A, S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 and markedly improved bacterial clearance. These data indicate a novel mechanism by which influenza A-induced type I IFNs inhibit Th17 immunity and increase susceptibility to secondary bacterial pneumonia.

Collaboration


Dive into the Shabaana A. Khader's collaboration.

Top Co-Authors

Avatar

Javier Rangel-Moreno

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radha Gopal

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yinyao Lin

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Troy D. Randall

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mushtaq Ahmed

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge