Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey M. Boyd is active.

Publication


Featured researches published by Jeffrey M. Boyd.


Biochemistry | 2008

Bacterial ApbC can bind and effectively transfer iron-sulfur clusters

Jeffrey M. Boyd; Antonio J. Pierik; Daili J. A. Netz; Roland Lill; Diana M. Downs

The metabolism of iron-sulfur ([Fe-S]) clusters requires a complex set of machinery that is still being defined. Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. ApbC is a 40.8 kDa homodimeric ATPase and as purified contains little iron and no acid-labile sulfide. An [Fe-S] cluster was reconstituted on ApbC, generating a protein that bound 2 mol of Fe and 2 mol of S (2-) per ApbC monomer and had a UV-visible absorption spectrum similar to known [4Fe-4S] cluster proteins. Holo-ApbC could rapidly and effectively activate Saccharomyces cerevisiae apo-isopropylmalate isolomerase (Leu1) in vitro, a process known to require the transfer of a [4Fe-4S] cluster. Maximum activation was achieved with 2 mol of ApbC per 1 mol of apo-Leu1. This article describes the first biochemical activity of ApbC in the context of [Fe-S] cluster metabolism. The data herein support a model in which ApbC coordinates an [4Fe-4S] cluster across its dimer interface and can transfer this cluster to an apoprotein acting as an [Fe-S] cluster scaffold protein, a function recently deduced for its eukaryotic homologues.


Biochemistry | 2014

Interplay between Oxygen and Fe–S Cluster Biogenesis:Insights from the Suf Pathway

Eric S. Boyd; Khaleh M. Thomas; Yuyuan Dai; Jeffrey M. Boyd; F. Wayne Outten

Iron–sulfur (Fe–S) cluster metalloproteins conduct essential functions in nearly all contemporary forms of life. The nearly ubiquitous presence of Fe–S clusters and the fundamental requirement for Fe–S clusters in both aerobic and anaerobic Archaea, Bacteria, and Eukarya suggest that these clusters were likely integrated into central metabolic pathways early in the evolution of life prior to the widespread oxidation of Earth’s atmosphere. Intriguingly, Fe–S cluster-dependent metabolism is sensitive to disruption by oxygen because of the decreased bioavailability of ferric iron as well as direct oxidation of sulfur trafficking intermediates and Fe–S clusters by reactive oxygen species. This fact, coupled with the ubiquity of Fe–S clusters in aerobic organisms, suggests that organisms evolved with mechanisms that facilitate the biogenesis and use of these essential cofactors in the presence of oxygen, which gradually began to accumulate around 2.5 billion years ago as oxygenic photosynthesis proliferated and reduced minerals that buffered against oxidation were depleted. This review highlights the most ancient of the Fe–S cluster biogenesis pathways, the Suf system, which likely was present in early anaerobic forms of life. Herein, we use the evolution of the Suf pathway to assess the relationships between the biochemical functions and physiological roles of Suf proteins, with an emphasis on the selective pressure of oxygen toxicity. Our analysis suggests that diversification into oxygen-containing environments disrupted iron and sulfur metabolism and was a main driving force in the acquisition of accessory Suf proteins (such as SufD, SufE, and SufS) by the core SufB–SufC scaffold complex. This analysis provides a new framework for the study of Fe–S cluster biogenesis pathways and Fe–S cluster-containing metalloenzymes and their complicated patterns of divergence in response to oxygen.


Journal of Microbiological Methods | 2014

A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile

Tammy M. Joska; Ameya A. Mashruwala; Jeffrey M. Boyd; William J. Belden

Cloning by homologous recombination (HR) in Saccharomyces cerevisiae is an extremely efficient and cost-effective alternative to other methods of recombinant DNA technologies. Unfortunately, it is incompatible with all the various specialized plasmids currently used in microbiology and biomedical research laboratories, and is therefore, not widely adopted. In an effort to dramatically improve the versatility of yeast gap-repair cloning and make it compatible with any DNA plasmid, we demonstrate that by simply including a yeast-cloning cassette (YCC) that contains the 2-micron origin of replication (2μm ori) and the ura3 gene for selection, multiple DNA fragments can be assembled into any DNA vector. We show this has almost unlimited potential by building a variety of plasmid for different uses including: recombinant protein production, epitope tagging, site-directed mutagenesis, and expression of fluorescent fusion proteins. We demonstrate the use in a variety of plasmids for use in microbial systems and even demonstrate it can be used in a vertebrate model. This method is remarkably simple and extremely efficient, plus it provides a significant cost saving over commercially available kits.


Journal of Bacteriology | 2009

Archaeal ApbC/Nbp35 Homologs Function as Iron-Sulfur Cluster Carrier Proteins

Jeffrey M. Boyd; Randy M. Drevland; Diana M. Downs; David E. Graham

Iron-sulfur clusters may have been the earliest catalytic cofactors on earth, and most modern organisms use them extensively. Although members of the Archaea produce numerous iron-sulfur proteins, the major cluster assembly proteins found in the Bacteria and Eukarya are not universally conserved in archaea. Free-living archaea do have homologs of the bacterial apbC and eukaryotic NBP35 genes that encode iron-sulfur cluster carrier proteins. This study exploits the genetic system of Salmonella enterica to examine the in vivo functionality of apbC/NBP35 homologs from three archaea: Methanococcus maripaludis, Methanocaldococcus jannaschii, and Sulfolobus solfataricus. All three archaeal homologs could correct the tricarballylate growth defect of an S. enterica apbC mutant. Additional genetic studies showed that the conserved Walker box serine and the Cys-X-X-Cys motif of the M. maripaludis MMP0704 protein were both required for function in vivo but that the amino-terminal ferredoxin domain was not. MMP0704 protein and an MMP0704 variant protein missing the N-terminal ferredoxin domain were purified, and the Fe-S clusters were chemically reconstituted. Both proteins bound equimolar concentrations of Fe and S and had UV-visible spectra similar to those of known [4Fe-4S] cluster-containing proteins. This family of dimeric iron-sulfur carrier proteins evolved before the archaeal and eukaryal lineages diverged, representing an ancient mode of cluster assembly.


Environmental Microbiology | 2014

Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii

Marie-Mathilde Perrineau; Ehud Zelzion; Jeferson Gross; Dana C. Price; Jeffrey M. Boyd; Debashish Bhattacharya

Understanding the genetic underpinnings of adaptive traits in microalgae is important for the study of evolution and for applied uses. We used long-term selection under a regime of serial transfers with haploid populations of the green alga Chlamydomonas reinhardtii raised in liquid TAP medium containing 200 mM NaCl. After 1255 generations, evolved salt (ES) populations could grow as rapidly in high salt medium as progenitor cells (progenitor light [PL]). Transcriptome data were analysed to elucidate the basis of salt tolerance in ES cells when compared with PL cells and to cells incubated for 48 h in high salt medium (progenitor salt [PS], the short-term acclimation response). These data demonstrate that evolved and short-term acclimation responses to salt stress differ fundamentally from each other. Progenitor salt cells exhibit well-known responses to salt stress such as reduction in photosynthesis, upregulation of glycerophospholipid signaling, and upregulation of the transcription and translation machinery. In contrast, ES cells show downregulation of genes involved in the stress response and in transcription/translation. Our results suggest that gene-rich mixotrophic lineages such as C. reinhardtii may be able to adapt rapidly to abiotic stress engendered either by a rapidly changing climate or physical vicariance events that isolate populations in stressful environments.


PLOS Pathogens | 2013

The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis.

Jennifer N. Walker; Heidi A. Crosby; Adam R. Spaulding; Wilmara Salgado-Pabón; Cheryl L. Malone; Carolyn B. Rosenthal; Patrick M. Schlievert; Jeffrey M. Boyd; Alexander R. Horswill

Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis.


Journal of Bacteriology | 2008

Salmonella enterica Requires ApbC Function for Growth on Tricarballylate: Evidence of Functional Redundancy between ApbC and IscU

Jeffrey M. Boyd; Jeffrey A. Lewis; Jorge C. Escalante-Semerena; Diana M. Downs

Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in [Fe-S] cluster metabolism. Here we show that apbC is required for S. enterica to use tricarballylate as a carbon and energy source. Tricarballylate catabolism requires three gene products, TcuA, TcuB, and TcuC. Of relevance to this work is the TcuB protein, which has two [4Fe-4S] clusters required for function, making it a logical target for the apbC effect. TcuB activity was 100-fold lower in an apbC mutant than in the isogenic apbC(+) strain. Genetic data show that derepression of the iscRSUA-hscAB-fdx-orf3 operon or overexpression of iscU from a plasmid compensates for the lack of ApbC during growth on tricarballylate. The studies described herein provide evidence that the scaffold protein IscU has a functional overlap with ApbC and that ApbC function is involved in the synthesis of active TcuB.


Mbio | 2013

Transcriptional Profiling of Staphylococcus aureus During Growth in 2 M NaCl Leads to Clarification of Physiological Roles for Kdp and Ktr K+ Uptake Systems

Alexa Price-Whelan; Chun Kit Poon; Meredith A. Benson; Tess T. Eidem; Christelle M. Roux; Jeffrey M. Boyd; Paul M. Dunman; Victor J. Torres; Terry A. Krulwich

ABSTRACT Staphylococcus aureus exhibits an unusually high level of osmotolerance and Na+ tolerance, properties that support survival in various host niches and in preserved foods. The genetic basis of these traits is not well understood. We compared the transcriptional profiles of S. aureus grown in complex medium with and without 2 M NaCl. The stimulon for growth in high-osmolality media and Na+ included genes involved in uptake of K+, other compatible solutes, sialic acid, and sugars; capsule biosynthesis; and amino acid and central metabolism. Quantitative PCR analysis revealed that the loci responded differently from each other to high osmolality imposed by elevated NaCl versus sucrose. High-affinity K+ uptake (kdp) genes and capsule biosynthesis (cap5) genes required the two-component system KdpDE for full induction by osmotic stress, with kdpA induced more by NaCl and cap5B induced more by sucrose. Focusing on K+ importers, we identified three S. aureus genes belonging to the lower-affinity Trk/Ktr family that encode two membrane proteins (KtrB and KtrD) and one accessory protein (KtrC). In the absence of osmotic stress, the ktr gene transcripts were much more abundant than the kdpA transcript. Disruption of S. aureus kdpA caused a growth defect under low-K+ conditions, disruption of ktrC resulted in a significant defect in 2 M NaCl, and a ΔktrC ΔkdpA double mutant exhibited both phenotypes. Protective effects of S. aureus Ktr transporters at elevated NaCl are consistent with previous indications that both Na+ and osmolality challenges are mitigated by the maintenance of a high cytoplasmic K+ concentration. IMPORTANCE There is general agreement that the osmotolerance and Na+ tolerance of Staphylococcus aureus are unusually high for a nonhalophile and support its capacity for human colonization, pathogenesis, and growth in food. Nonetheless, the molecular basis for these properties is not well defined. The genome-wide response of S. aureus to a high concentration, 2 M, of NaCl revealed the upregulation of expected genes, such as those for transporters of compatible solutes that are widely implicated in supporting osmotolerance. A high-affinity potassium uptake system, KdpFABC, was upregulated, although it generally plays a physiological role under very low K+ conditions. At higher K+ concentrations, a lower-affinity and more highly expressed type of K+ transporter system, Ktr transporters, was shown to play a significant role in high Na+ tolerance. This study illustrates the importance of the K+ status of the cell for tolerance of Na+ by S. aureus and underscores the importance of monovalent cation cycles in this pathogen. There is general agreement that the osmotolerance and Na+ tolerance of Staphylococcus aureus are unusually high for a nonhalophile and support its capacity for human colonization, pathogenesis, and growth in food. Nonetheless, the molecular basis for these properties is not well defined. The genome-wide response of S. aureus to a high concentration, 2 M, of NaCl revealed the upregulation of expected genes, such as those for transporters of compatible solutes that are widely implicated in supporting osmotolerance. A high-affinity potassium uptake system, KdpFABC, was upregulated, although it generally plays a physiological role under very low K+ conditions. At higher K+ concentrations, a lower-affinity and more highly expressed type of K+ transporter system, Ktr transporters, was shown to play a significant role in high Na+ tolerance. This study illustrates the importance of the K+ status of the cell for tolerance of Na+ by S. aureus and underscores the importance of monovalent cation cycles in this pathogen.


Journal of Biological Chemistry | 2009

Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function

Jeffrey M. Boyd; Jamie L. Sondelski; Diana M. Downs

The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195–8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of “deviant” Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function.


Molecular Microbiology | 2015

Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus.

Ameya A. Mashruwala; Yun Y. Pang; Zuelay Rosario-Cruz; Harsimranjit K. Chahal; Meredith A. Benson; Laura A. Mike; Eric P. Skaar; Victor J. Torres; William M. Nauseef; Jeffrey M. Boyd

The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron‐sulfur (Fe‐S) clusters, which are required for functional Fe‐S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe‐S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe‐S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as an Fe‐S cluster carrier, which aids in the maturation of Fe‐S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non‐incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe‐S cluster metabolism as an attractive antimicrobial target.

Collaboration


Dive into the Jeffrey M. Boyd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana M. Downs

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander R. Horswill

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Eric P. Skaar

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge