Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Belden is active.

Publication


Featured researches published by William J. Belden.


Journal of Cell Biology | 2001

Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding

Shilpa Vashist; Woong Kim; William J. Belden; Eric D. Spear; Charles Barlowe; Davis T.W. Ng

Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII–coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins.


Cell | 2008

SIRT1 Is a Circadian Deacetylase for Core Clock Components

William J. Belden; Jay C. Dunlap

The transcriptional activator CLOCK is a histone acetyltransferase that is required for the circadian expression of many genes. Asher et al. (2008) and Nakahata et al. (2008) now demonstrate that the NAD(+)-dependent enzyme SIRT1 functions as a histone deacetylase that counteracts the activity of CLOCK. These results broaden our understanding of the impact of cellular metabolism on the circadian system.


Journal of Biological Chemistry | 2001

Distinct roles for the cytoplasmic tail sequences of Emp24p and Erv25p in transport between the endoplasmic reticulum and golgi complex

William J. Belden; Charles Barlowe

Heteromeric complexes of p24 proteins cycle between early compartments of the secretory pathway and are required for efficient protein sorting. Here we investigated the role of cytoplasmically exposed tail sequences on two p24 proteins, Emp24p and Erv25p, in directing their movement and subcellular location in yeast. Studies on a series of deletion and chimeric Emp24p-Erv25p proteins indicated that the tail sequences impart distinct functional properties that were partially redundant but not entirely interchangeable. Export of an Emp24p-Erv25p complex from the endoplasmic reticulum (ER) did not depend on two other associated p24 proteins, Erp1 and Erp2p. To examine interactions between the Emp24p and Erv25p tail sequences with the COPI and COPII coat proteins, binding experiments with immobilized tail peptides and coat proteins were performed. The Emp24p and Erv25p tail sequences bound the Sec13p/Sec31p subunit of the COPII coat (K d ∼100 μm), and binding depended on a pair of aromatic residues found in both tail sequences. COPI subunits also bound to these Emp24p and Erv25p peptides; however, the Erv25p tail sequence, which contains a dilysine motif, bound COPI more efficiently. These results suggest that both the Emp24p and Erv25p cytoplasmic sequences contain a di-aromatic motif that binds subunits of the COPII coat and promotes export from the ER. The Erv25p tail sequence binds COPI and is responsible for returning this complex to the ER.


PLOS Genetics | 2011

CHD1 Remodels Chromatin and Influences Transient DNA Methylation at the Clock Gene frequency

William J. Belden; Zachary A. Lewis; Eric U. Selker; Jennifer J. Loros; Jay C. Dunlap

Circadian-regulated gene expression is predominantly controlled by a transcriptional negative feedback loop, and it is evident that chromatin modifications and chromatin remodeling are integral to this process in eukaryotes. We previously determined that multiple ATP–dependent chromatin-remodeling enzymes function at frequency (frq). In this report, we demonstrate that the Neurospora homologue of chd1 is required for normal remodeling of chromatin at frq and is required for normal frq expression and sustained rhythmicity. Surprisingly, our studies of CHD1 also revealed that DNA sequences within the frq promoter are methylated, and deletion of chd1 results in expansion of this methylated domain. DNA methylation of the frq locus is altered in strains bearing mutations in a variety of circadian clock genes, including frq, frh, wc-1, and the gene encoding the frq antisense transcript (qrf). Furthermore, frq methylation depends on the DNA methyltransferase, DIM-2. Phenotypic characterization of Δdim-2 strains revealed an approximate WT period length and a phase advance of approximately 2 hours, indicating that methylation plays only an ancillary role in clock-regulated gene expression. This suggests that DNA methylation, like the antisense transcript, is necessary to establish proper clock phasing but does not control overt rhythmicity. These data demonstrate that the epigenetic state of clock genes is dependent on normal regulation of clock components.


Cold Spring Harbor Symposia on Quantitative Biology | 2007

A Circadian Clock in Neurospora: How Genes and Proteins Cooperate to Produce a Sustained, Entrainable, and Compensated Biological Oscillator with a Period of about a Day

Jay C. Dunlap; Jennifer J. Loros; Hildur V. Colot; Arun Mehra; William J. Belden; Mi Shi; Christian I. Hong; Luis F. Larrondo; Christopher L. Baker; Chen-Hui Chen; C. Schwerdtfeger; Patrick D. Collopy; Joshua J. Gamsby; Randy Lambreghts

Neurospora has proven to be a tractable model system for understanding the molecular bases of circadian rhythms in eukaryotes. At the core of the circadian oscillatory system is a negative feedback loop in which two transcription factors, WC-1 and WC-2, act together to drive expression of the frq gene. WC-2 enters the promoter region of frq coincident with increases in frq expression and then exits when the cycle of transcription is over, whereas WC-1 can always be found there. FRQ promotes the phosphorylation of the WCs, thereby decreasing their activity, and phosphorylation of FRQ then leads to its turnover, allowing the cycle to reinitiate. By understanding the action of light and temperature on frq and FRQ expression, the molecular basis of circadian entrainment to environmental light and temperature cues can be understood, and recently a specific role for casein kinase 2 has been found in the mechanism underlying circadian temperature-compensation. These data promise molecular explanations for all of the canonical circadian properties of this model system, providing biochemical answers and regulatory logic that may be extended to more complex eukaryotes including humans.


Genetics | 2008

A High-Density Single Nucleotide Polymorphism Map for Neurospora crassa

Randy Lambreghts; Mi Shi; William J. Belden; David DeCaprio; Daniel J. Park; Matthew R. Henn; James E. Galagan; Meray Baştürkmen; Bruce Birren; Matthew S. Sachs; Jay C. Dunlap; Jennifer J. Loros

We report the discovery and validation of a set of single nucleotide polymorphisms (SNPs) between the reference Neurospora crassa strain Oak Ridge and the Mauriceville strain (FGSC 2555), of sufficient density to allow fine mapping of most loci. Sequencing of Mauriceville cDNAs and alignment to the completed genomic sequence of the Oak Ridge strain identified 19,087 putative SNPs. Of these, a subset was validated by cleaved amplified polymorphic sequence (CAPS), a simple and robust PCR-based assay that reliably distinguishes between SNP alleles. Experimental confirmation resulted in the development of 250 CAPS markers distributed evenly over the genome. To demonstrate the applicability of this map, we used bulked segregant analysis followed by interval mapping to locate the csp-1 mutation to a narrow region on LGI. Subsequently, we refined mapping resolution to 74 kbp by developing additional markers, resequenced the candidate gene, NCU02713.3, in the mutant background, and phenocopied the mutation by gene replacement in the WT strain. Together, these techniques demonstrate a generally applicable and straightforward approach for the isolation of novel genes from existing mutants. Data on both putative and validated SNPs are deposited in a customized public database at the Broad Institute, which encourages augmentation by community users.


Eukaryotic Cell | 2010

Genetic and Molecular Characterization of a Cryptochrome from the Filamentous Fungus Neurospora crassa

Allan C. Froehlich; Chen-Hui Chen; William J. Belden; Cornelia Madeti; Till Roenneberg; Martha Merrow; Jennifer J. Loros; Jay C. Dunlap

ABSTRACT In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay under circadian entrainment. Using electrophoretic mobility shift assays (EMSA), we show that CRY is capable of binding single- and double-stranded DNA (ssDNA and dsDNA, respectively) and ssRNA and dsRNA. Whole-genome microarray experiments failed to identify substantive transcriptional regulatory activity of cry under our laboratory conditions.


Journal of Microbiological Methods | 2014

A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile

Tammy M. Joska; Ameya A. Mashruwala; Jeffrey M. Boyd; William J. Belden

Cloning by homologous recombination (HR) in Saccharomyces cerevisiae is an extremely efficient and cost-effective alternative to other methods of recombinant DNA technologies. Unfortunately, it is incompatible with all the various specialized plasmids currently used in microbiology and biomedical research laboratories, and is therefore, not widely adopted. In an effort to dramatically improve the versatility of yeast gap-repair cloning and make it compatible with any DNA plasmid, we demonstrate that by simply including a yeast-cloning cassette (YCC) that contains the 2-micron origin of replication (2μm ori) and the ura3 gene for selection, multiple DNA fragments can be assembled into any DNA vector. We show this has almost unlimited potential by building a variety of plasmid for different uses including: recombinant protein production, epitope tagging, site-directed mutagenesis, and expression of fluorescent fusion proteins. We demonstrate the use in a variety of plasmids for use in microbial systems and even demonstrate it can be used in a vertebrate model. This method is remarkably simple and extremely efficient, plus it provides a significant cost saving over commercially available kits.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Circadian rhythms synchronize mitosis in Neurospora crassa

Christian I. Hong; Judit Zámborszky; Mokryun Baek; Laszlo Labiscsak; Kyungsu Ju; Hyeyeong Lee; Luis F. Larrondo; Alejandra Goity; Hin Siong Chong; William J. Belden; Attila Csikász-Nagy

Significance Circadian rhythms provide temporal information to other cellular processes, such as metabolism. We investigate the coupling between the cell cycle and the circadian clock using mathematical modeling and experimentally validate model-driven predictions with a model filamentous fungus, Neurospora crassa. We demonstrate a conserved coupling mechanism between the cell cycle and the circadian clock in Neurospora as in mammals, which results in circadian clock-gated mitotic cycles. Furthermore, we observe circadian clock-dependent phase shifts of G1 and G2 cyclins, which may alter the timing of divisions. Our work has large implications for the general understanding of the connection between the cell cycle and the circadian clock. The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frqko mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.


Journal of Biological Chemistry | 2013

Methylation of Histone H3 on Lysine 4 by the Lysine Methyltransferase SET1 Protein Is Needed for Normal Clock Gene Expression

Hamidah Raduwan; Allison L. Isola; William J. Belden

Background: Eukaryotic circadian clocks require chromatin modifications and remodeling. Results: SET1 is required for proper expression of the Neurospora clock gene frequency (frq). SET1 modifies chromatin at frq with the peak in H3K4me3 occurring after the peak in activation. Conclusion: H3K4 methylation appears to mitigate White Collar complex (WCC)-mediated expression. Significance: Chromatin is a key component underlying circadian oscillations in gene expression. The circadian oscillator controls time-of-day gene expression by a network of interconnected feedback loops and is reset by light. The requisite for chromatin regulation in eukaryotic transcription necessitates temporal regulation of histone-modifying and chromatin-remodeling enzymes for proper clock function. CHD1 is known to bind H3K4me3 in mammalian cells, and Neurospora CHD1 is required for proper regulation of the frequency (frq) gene. Based on this, we examined a strain lacking SET1 to determine the role of H3K4 methylation in clock- and light-mediated frq regulation. Expression of frq was altered in strains lacking set1 under both circadian- and light-regulated gene expression. There is a delay in the phasing of H3K4me3 relative to the peak in frq expression. White Collar 2 (WC-2) association with the frq promoter persists longer in Δset1, suggesting a more permissible chromatin state. Surprisingly, SET1 is required for DNA methylation in the frq promoter, indicating a dependence on H3K4me for DNA methylation. The data support a model where SET1 is needed for proper regulation by modulating chromatin at frq.

Collaboration


Dive into the William J. Belden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis F. Larrondo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge