Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey P. Mower is active.

Publication


Featured researches published by Jeffrey P. Mower.


BMC Evolutionary Biology | 2007

Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants

Jeffrey P. Mower; Pascal Touzet; Julie S Gummow; Lynda F. Delph; Jeffrey D. Palmer

BackgroundIt has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants.ResultsA broad survey was undertaken to evaluate synonymous substitution rates in mitochondrial genes of angiosperms and gymnosperms. Although most taxa conform to the generality that plant mitochondrial sequences evolve slowly, additional cases of highly accelerated rates were found. We explore in detail one of these new cases, within the genus Silene. A roughly 100-fold increase in synonymous substitution rate is estimated to have taken place within the last 5 million years and involves only one of ten species of Silene sampled in this study. Examples of unusually slow sequence evolution were also identified. Comparison of the fastest and slowest lineages shows that synonymous substitution rates vary by four orders of magnitude across seed plants. In other words, some plant mitochondrial lineages accumulate more synonymous change in 10,000 years than do others in 100 million years. Several perplexing cases of gene-to-gene variation in sequence divergence within a plant were uncovered. Some of these probably reflect interesting biological phenomena, such as horizontal gene transfer, mitochondrial-to-nucleus transfer, and intragenomic variation in mitochondrial substitution rates, whereas others are likely the result of various kinds of errors.ConclusionThe extremes of synonymous substitution rates measured here constitute by far the largest known range of rate variation for any group of organisms. These results highlight the utility of examining absolute substitution rates in a phylogenetic context rather than by traditional pairwise methods. Why substitution rates are generally so low in plant mitochondrial genomes yet occasionally increase dramatically remains mysterious.


Molecular Genetics and Genomics | 2006

Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris

Jeffrey P. Mower; Jeffrey D. Palmer

RNA editing is a process that modifies the information in transcripts of almost all angiosperm mitochondrial protein-coding genes. In order to determine the frequency and distribution of mitochondrial RNA editing in Beta vulgaris, cDNAs were sequenced and compared to the published genome sequence. 357 C to U conversions were identified across the 31 known protein genes and pseudogenes in Beta, the fewest so far for a plant mitochondrial genome. Editing patterns in the putative gene orf518 indicate that it is most likely a functional ccmC homolog, indicating that patterns of editing can be a useful determinant of gene functionality. orf518 also contains a triplicated repeat region whose members are nearly identical yet differentially edited, most likely due to differences in the sequence context of the editing sites. In addition, we show that partial editing in Beta is common at silent editing sites but rare at nonsilent editing sites, extending previous observations to a complete plant mitochondrial genome. Finally, the degree of partial editing observed for certain genes was dependent on the choice of primers used, demonstrating that care must be taken when designing primers for use in editing studies.


Nucleic Acids Research | 2009

The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments

Jeffrey P. Mower

RNA editing alters plant mitochondrial and chloroplast transcripts by converting specific cytidines to uridines, which usually results in a change in the amino acid sequence of the translated protein. Systematic studies have experimentally identified sites of RNA editing in organellar transcriptomes from several species, but these analyses have not kept pace with rate of genome sequencing. The PREP (predictive RNA editors for plants) suite was developed to computationally predict sites of RNA editing based on the well-known principle that editing in plant organelles increases the conservation of proteins across species. The PREP suite provides predictive RNA editors for plant mitochondrial genes (PREP-Mt), for chloroplast genes (PREP-Cp), and for alignments submitted by the user (PREP-Aln). These servers require minimal input, are very fast, and are highly accurate on all seed plants examined to date. PREP-Mt has proved useful in several research studies and the newly developed PREP-Cp and PREP-Aln servers should be of further assistance for analyses that require knowledge of the location of sites of RNA editing. The PREP suite is freely available at http://prep.unl.edu/.


BMC Biology | 2010

Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

Jeffrey P. Mower; Saša Stefanović; Weilong Hao; Julie S Gummow; Kanika Jain; Dana Ahmed; Jeffrey D. Palmer

BackgroundHorizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants.ResultsIn order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes.ConclusionsThis study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago.See Commentary: http://www.biomedcentral.com/1741-7007/8/147.


Archive | 2012

Plant Mitochondrial Genome Diversity: The Genomics Revolution

Jeffrey P. Mower; Daniel B. Sloan; Andrew J. Alverson

Mitochondrial genomes are remarkably diverse among green plants, and the explosion of genome sequencing over the last 30 years has greatly expanded our understanding of this diversity. Genome sizes range from 20 kilobases in some green algae to several megabases in certain angiosperms. The repertoire of genes, introns, repeats, and RNA editing is also variable, as is the amount of DNA integrated from foreign sources, including the plastid, nucleus, and other species. Genome structure is labile due to recombination involving large and small repeats, which produces multiple genomic arrangements within species and loss of synteny among species. In this review, we describe the range of diversity among plant mitochondrial genomes, discuss how the genomics revolution has advanced our understanding of this diversity, and stress the importance of future studies to resolve remaining uncertainties


BMC Evolutionary Biology | 2013

Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

Felix Grewe; Wenhu Guo; Emily A Gubbels; A. Katie Hansen; Jeffrey P. Mower

BackgroundPlastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic.ResultsIn order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida.ConclusionsAlthough molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution.


New Phytologist | 2016

Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates

Andan Zhu; Wenhu Guo; Sakshi Gupta; Weishu Fan; Jeffrey P. Mower

Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR provides enhanced copy-correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.7 times slower in IR genes than in SC genes. In addition, genes moved from the SC into the IR exhibit lower synonymous rates consistent with other IR genes, while genes moved from the IR into the SC exhibit higher rates consistent with other SC genes. Surprisingly, however, several plastid genes from Pelargonium, Plantago, and Silene have highly accelerated synonymous rates despite their IR localization. Together, these results provide strong evidence that the duplicative nature of the IR reduces the substitution rate within this region. The anomalously fast-evolving genes in Pelargonium, Plantago, and Silene indicate localized hypermutation, potentially induced by a higher level of error-prone double-strand break repair in these regions, which generates substitutional rate variation.


Molecular Biology and Evolution | 2014

Unprecedented Heterogeneity in the Synonymous Substitution Rate within a Plant Genome

Andan Zhu; Wenhu Guo; Kanika Jain; Jeffrey P. Mower

The synonymous substitution rate varies widely among species, but it is generally quite stable within a genome due to the absence of strong selective pressures. In plants, plastid genes tend to evolve faster than mitochondrial genes, rate variation among species generally correlates between the mitochondrial and plastid genomes, and few examples of intragenomic rate heterogeneity exist. To study the extent of substitution rate variation between and within plant organellar genomes, we sequenced the complete mitochondrial and plastid genomes from the bugleweed, Ajuga reptans, which was previously shown to exhibit rate heterogeneity for several mitochondrial genes. Substitution rates were accelerated specifically in the mitochondrial genome, which contrasts with correlated plastid and mitochondrial rate changes in most other angiosperms. Strikingly, we uncovered a 340-fold range of synonymous substitution rate variation among Ajuga mitochondrial genes. This is by far the largest amount of synonymous rate heterogeneity ever reported for a genome, but the evolutionary forces driving this phenomenon are unclear. Selective effects on synonymous sites in plant mitochondria are generally weak and thus unlikely to generate such unprecedented intragenomic rate heterogeneity. Quickly evolving genes are not clustered in the genome, arguing against localized hypermutation, although it is possible that they were clustered ancestrally given the high rate of genomic rearrangement in plant mitochondria. Mutagenic retroprocessing, involving error-prone reverse transcription and genomic integration of mature transcripts, is hypothesized as another potential explanation.


Mitochondrion | 2014

Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea

Felix Grewe; Patrick P. Edger; Ido Keren; Laure D. Sultan; J. Chris Pires; Oren Ostersetzer-Biran; Jeffrey P. Mower

To elucidate the evolution of mitochondrial genomic diversity within a single order of angiosperms, we sequenced seven Brassicales genomes and the transcriptome of Brassica oleracea. In the common ancestor of Brassicaceae, several genes of known function were lost and the ccmFN gene was split into two independent genes, which also coincides with a trend of genome reduction towards the smallest sequenced angiosperm genomes of Brassica. For most ORFs of unknown function, the lack of conservation throughout Brassicales and the generally low expression and absence of RNA editing in B. oleracea argue against functionality. However, two chimeric ORFs were expressed and edited in B. oleracea, suggesting a potential role in cytoplasmic male sterility in certain nuclear backgrounds. These results demonstrate how frequent shifts in size, structure, and content of plant mitochondrial genomes can occur over short evolutionary time scales.


Genome Biology and Evolution | 2012

Evidence against Equimolarity of Large Repeat Arrangements and a Predominant Master Circle Structure of the Mitochondrial Genome from a Monkeyflower (Mimulus guttatus) Lineage with Cryptic CMS

Jeffrey P. Mower; Andrea L. Case; Eric R. Floro; John H. Willis

Despite intense investigation for over 25 years, the in vivo structure of plant mitochondrial genomes remains uncertain. Mapping studies and genome sequencing generally produce large circular chromosomes, whereas electrophoretic and microscopic studies typically reveal linear and multibranched molecules. To more fully assess the structure of plant mitochondrial genomes, the complete sequence of the monkeyflower (Mimulus guttatus DC. line IM62) mitochondrial DNA was constructed from a large (35 kb) paired-end shotgun sequencing library to a high depth of coverage (∼30×). The complete genome maps as a 525,671 bp circular molecule and exhibits a fairly conventional set of features including 62 genes (encoding 35 proteins, 24 transfer RNAs, and 3 ribosomal RNAs), 22 introns, 3 large repeats (2.7, 9.6, and 29 kb), and 96 small repeats (40–293 bp). Most paired-end reads (71%) mapped to the consensus sequence at the expected distance and orientation across the entire genome, validating the accuracy of assembly. Another 10% of reads provided clear evidence of alternative genomic conformations due to apparent rearrangements across large repeats. Quantitative assessment of these repeat-spanning read pairs revealed that all large repeat arrangements are present at appreciable frequencies in vivo, although not always in equimolar amounts. The observed stoichiometric differences for some arrangements are inconsistent with a predominant master circular structure for the mitochondrial genome of M. guttatus IM62. Finally, because IM62 contains a cryptic cytoplasmic male sterility (CMS) system, an in silico search for potential CMS genes was undertaken. The three chimeric open reading frames (ORFs) identified in this study, in addition to the previously identified ORFs upstream of the nad6 gene, are the most likely CMS candidate genes in this line.

Collaboration


Dive into the Jeffrey P. Mower's collaboration.

Top Co-Authors

Avatar

Felix Grewe

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Wenhu Guo

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Palmer

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Andan Zhu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Weishu Fan

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Kanika Jain

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Robert K. Jansen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracey A. Ruhlman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Arnoldo Santos-Guerra

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge