Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey D. Palmer is active.

Publication


Featured researches published by Jeffrey D. Palmer.


Nature Reviews Genetics | 2008

Horizontal gene transfer in eukaryotic evolution

Patrick J. Keeling; Jeffrey D. Palmer

Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.


Molecular Biology and Evolution | 2010

Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae)

Andrew J. Alverson; XiaoXin Wei; Danny W. Rice; David B. Stern; Kerrie Barry; Jeffrey D. Palmer

The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.


BMC Evolutionary Biology | 2005

Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae

Christopher L. Parkinson; Jeffrey P. Mower; Yin Long Qiu; Andrew J. Shirk; Keming Song; Nelson D. Young; Claude W. dePamphilis; Jeffrey D. Palmer

BackgroundRates of synonymous nucleotide substitutions are, in general, exceptionally low in plant mitochondrial genomes, several times lower than in chloroplast genomes, 10–20 times lower than in plant nuclear genomes, and 50–100 times lower than in many animal mitochondrial genomes. Several cases of moderate variation in mitochondrial substitution rates have been reported in plants, but these mostly involve correlated changes in chloroplast and/or nuclear substitution rates and are therefore thought to reflect whole-organism forces rather than ones impinging directly on the mitochondrial mutation rate. Only a single case of extensive, mitochondrial-specific rate changes has been described, in the angiosperm genus Plantago.ResultsWe explored a second potential case of highly accelerated mitochondrial sequence evolution in plants. This case was first suggested by relatively poor hybridization of mitochondrial gene probes to DNA of Pelargonium hortorum (the common geranium). We found that all eight mitochondrial genes sequenced from P. hortorum are exceptionally divergent, whereas chloroplast and nuclear divergence is unexceptional in P. hortorum. Two mitochondrial genes were sequenced from a broad range of taxa of variable relatedness to P. hortorum, and absolute rates of mitochondrial synonymous substitutions were calculated on each branch of a phylogenetic tree of these taxa. We infer one major, ~10-fold increase in the mitochondrial synonymous substitution rate at the base of the Pelargonium family Geraniaceae, and a subsequent ~10-fold rate increase early in the evolution of Pelargonium. We also infer several moderate to major rate decreases following these initial rate increases, such that the mitochondrial substitution rate has returned to normally low levels in many members of the Geraniaceae. Finally, we find unusually little RNA editing of Geraniaceae mitochondrial genes, suggesting high levels of retroprocessing in their history.ConclusionThe existence of major, mitochondrial-specific changes in rates of synonymous substitutions in the Geraniaceae implies major and reversible underlying changes in the mitochondrial mutation rate in this family. Together with the recent report of a similar pattern of rate heterogeneity in Plantago, these findings indicate that the mitochondrial mutation rate is a more plastic character in plants than previously realized. Many molecular factors could be responsible for these dramatic changes in the mitochondrial mutation rate, including nuclear gene mutations affecting the fidelity and efficacy of mitochondrial DNA replication and/or repair and – consistent with the lack of RNA editing – exceptionally high levels of mutagenic retroprocessing. That the mitochondrial mutation rate has returned to normally low levels in many Geraniaceae raises the possibility that, akin to the ephemerality of mutator strains in bacteria, selection favors a low mutation rate in plant mitochondria.


Molecular Biology and Evolution | 2008

Frequent, Phylogenetically Local Horizontal Transfer of the cox1 Group I Intron in Flowering Plant Mitochondria

M. Virginia Sanchez-Puerta; Yangrae Cho; Jeffrey P. Mower; Andrew J. Alverson; Jeffrey D. Palmer

Horizontal gene transfer is surprisingly common among plant mitochondrial genomes. The first well-established case involves a homing group I intron in the mitochondrial cox1 gene shown to have been frequently acquired via horizontal transfer in angiosperms. Here, we report extensive additional sampling of angiosperms, including 85 newly sequenced introns from 30 families. Analysis of all available data leads us to conclude that, among the 640 angiosperms (from 212 families) whose cox1 intron status has been characterized thus far, the intron has been acquired via roughly 70 separate horizontal transfer events. We propose that the intron was originally seeded into angiosperms by a single transfer from fungi, with all subsequent inferred transfers occurring from one angiosperm to another. The pattern of angiosperm-to-angiosperm transfer is biased toward exchanges between plants belonging to the same family. Illegitimate pollination is proposed as one potential factor responsible for this pattern, given that aberrant, cross-species pollination is more likely between close relatives. Other potential factors include shared vectoring agents or common geographic locations. We report the first apparent cases of loss of the cox1 intron; losses are accompanied by retention of the exonic coconversion tract, which is located immediately downstream of the intron and which is a product of the introns self-insertion mechanism. We discuss the many reasons why the cox1 intron is so frequently and detectably transferred, and rarely lost, and conclude that it should be regarded as the canary in the coal mine with respect to horizontal transfer in angiosperm mitochondria.


Molecular Genetics and Genomics | 2006

Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris

Jeffrey P. Mower; Jeffrey D. Palmer

RNA editing is a process that modifies the information in transcripts of almost all angiosperm mitochondrial protein-coding genes. In order to determine the frequency and distribution of mitochondrial RNA editing in Beta vulgaris, cDNAs were sequenced and compared to the published genome sequence. 357 C to U conversions were identified across the 31 known protein genes and pseudogenes in Beta, the fewest so far for a plant mitochondrial genome. Editing patterns in the putative gene orf518 indicate that it is most likely a functional ccmC homolog, indicating that patterns of editing can be a useful determinant of gene functionality. orf518 also contains a triplicated repeat region whose members are nearly identical yet differentially edited, most likely due to differences in the sequence context of the editing sites. In addition, we show that partial editing in Beta is common at silent editing sites but rare at nonsilent editing sites, extending previous observations to a complete plant mitochondrial genome. Finally, the degree of partial editing observed for certain genes was dependent on the choice of primers used, demonstrating that care must be taken when designing primers for use in editing studies.


BMC Evolutionary Biology | 2010

Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia

Daniel B. Sloan; Andrew J. Alverson; Helena Štorchová; Jeffrey D. Palmer; Douglas R. Taylor

BackgroundMitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms.ResultsIn this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near recombinational equilibrium. The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA.ConclusionsThese findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.


Genome Biology and Evolution | 2012

Recent Acceleration of Plastid Sequence and Structural Evolution Coincides with Extreme Mitochondrial Divergence in the Angiosperm Genus Silene

Daniel B. Sloan; Andrew J. Alverson; Martin Wu; Jeffrey D. Palmer; Douglas R. Taylor

The angiosperm genus Silene exhibits some of the most extreme and rapid divergence ever identified in mitochondrial genome architecture and nucleotide substitution rates. These patterns have been considered mitochondrial specific based on the absence of correlated changes in the small number of available nuclear and plastid gene sequences. To better assess the relationship between mitochondrial and plastid evolution, we sequenced the plastid genomes from four Silene species with fully sequenced mitochondrial genomes. We found that two species with fast-evolving mitochondrial genomes, S. noctiflora and S. conica, also exhibit accelerated rates of sequence and structural evolution in their plastid genomes. The nature of these changes, however, is markedly different from those in the mitochondrial genome. For example, in contrast to the mitochondrial pattern, which appears to be genome wide and mutationally driven, the plastid substitution rate accelerations are restricted to a subset of genes and preferentially affect nonsynonymous sites, indicating that altered selection pressures are acting on specific plastid-encoded functions in these species. Indeed, some plastid genes in S. noctiflora and S. conica show strong evidence of positive selection. In contrast, two species with more slowly evolving mitochondrial genomes, S. latifolia and S. vulgaris, have correspondingly low rates of nucleotide substitution in plastid genes as well as a plastid genome structure that has remained essentially unchanged since the origin of angiosperms. These results raise the possibility that common evolutionary forces could be shaping the extreme but distinct patterns of divergence in both organelle genomes within this genus.


Archive | 1992

Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants

Jeffrey D. Palmer

Plants are unique among eukaryotes in possessing two DNA-containing organelles—the plastid and the mitochondrion. Moreover, the green alga Chlamydomonas reinhardtii has recently been shown to contain a third extranuclear genome—that of the basal body (Hall et al., 1989). Nothing is known about the origin, phylogenetic distribution and evolution of basal body DNA, and therefore this genome will not be considered in this chapter. In contrast, we now possess a rather detailed picture of the tempo and mode of evolution of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) in land plants. Review of this topic will form the heart of this chapter, as presented in Sects. III–V. Data for both genomes will be presented in an integrated format in order to highlight the striking contrasts in their evolution in land plants. The much more limited evolutionary data base available for algal organelle genomes will be discussed in Sect. VI. All plastid and mitochondrial genomes are of endosymbiotic, bacterial origin. However, as discussed in the next section, considerable uncertainty remains as to the precise number and nature of endosymbioses that have taken place.


Current Genetics | 2003

Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms

Michael P. Cummings; Jacqueline M. Nugent; Richard G. Olmstead; Jeffrey D. Palmer

Abstract We used the chloroplast gene rbcL as a model to study the frequency and relative timing of transfer of chloroplast sequences to the mitochondrial genome. Southern blot survey of 20xa0mitochondrial DNAs confirmed three previously reported groups of plants containing rbcL in their mitochondrion, while PCR studies identified a new mitochondrial rbcL. Published and newly determined mitochondrial and chloroplast rbcL sequences were used to reconstruct rbcL phylogeny. The results imply five or six separate interorganellar transfers of rbcL among the angiosperms examined, and hundreds of successful transfers across all flowering plants. By taxonomic criteria, the crucifer transfer is the most ancient, two separate transfers within the grass family are of intermediate ancestry, and the morning-glory transfer is most recent. All five mitochondrial copies of rbcL examined exhibit insertion and/or deletion events that disrupt the reading frame (three are grossly truncated); and all are elevated in the proportion of nonsynonymous substitutions, providing clear evidence that these sequences are pseudogenes.


Nature | 2000

Phylogeny: Parabasalian flagellates are ancient eukaryotes

Patrick J. Keeling; Jeffrey D. Palmer

Discrepancies between eukaryotic phylogenetic trees based on different gene sequences have led to the suggestion that the deepest branches of each gene tree could simply be artefacts of rapid evolution rather than indicators of an ancient divergence. But if an insertion or deletion occurred in a gene sequence very early in eukaryotic evolution, the oldest eukaryotic lineages should be recognizable by their resemblance to prokaryotes lacking this character. Here we investigate the structure of the gene encoding enolase, an enzyme of the glycolytic pathway, and find that the gene from parabasalian flagellates lacks two deletions present in other eukaryotic enolases, indicating that Parabasalia could be the most ancient eukaryotes examined so far.

Collaboration


Dive into the Jeffrey D. Palmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude W. dePamphilis

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Aaron O. Richardson

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Daniel B. Sloan

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Danny W. Rice

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Young

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jeffrey L. Boore

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kerrie Barry

United States Department of Energy

View shared research outputs
Researchain Logo
Decentralizing Knowledge