Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Chabot is active.

Publication


Featured researches published by Jeffrey R. Chabot.


Toxicological Sciences | 2008

Cellular Imaging Predictions of Clinical Drug-Induced Liver Injury

Jinghai J. Xu; Peter V. Henstock; Margaret C. Dunn; Arthur R. Smith; Jeffrey R. Chabot; David de Graaf

Drug-induced liver injury (DILI) is the most common adverse event causing drug nonapprovals and drug withdrawals. Using drugs as test agents and measuring a panel of cellular phenotypes that are directly linked to key mechanisms of hepatotoxicity, we have developed an in vitro testing strategy that is predictive of many clinical outcomes of DILI. Mitochondrial damage, oxidative stress, and intracellular glutathione, all measured by high content cellular imaging in primary human hepatocyte cultures, are the three most important features contributing to the hepatotoxicity prediction. When applied to over 300 drugs and chemicals including many that caused rare and idiosyncratic liver toxicity in humans, our testing strategy has a true-positive rate of 50-60% and an exceptionally low false-positive rate of 0-5%. These in vitro predictions can augment the performance of the combined traditional preclinical animal tests by identifying idiosyncratic human hepatotoxicants such as nimesulide, telithromycin, nefazodone, troglitazone, tetracycline, sulindac, zileuton, labetalol, diclofenac, chlorzoxazone, dantrolene, and many others. Our findings provide insight to key DILI mechanisms, and suggest a new approach in hepatotoxicity testing of pharmaceuticals.


Journal of Biological Chemistry | 2012

Increasing Serum Half-life and Extending Cholesterol Lowering in Vivo by Engineering Antibody with pH-sensitive Binding to PCSK9

Javier Chaparro-Riggers; Hong Liang; Rachel M. DeVay; Lanfang Bai; Janette Sutton; Wei Chen; Tao Geng; Kevin Lindquist; Meritxell Galindo Casas; Leila Marie Boustany; Colleen Brown; Jeffrey R. Chabot; Bruce Charles Gomes; Pamela D. Garzone; Andrea Rossi; Pavel Strop; Dave Shelton; Jaume Pons; Arvind Rajpal

Background: An antagonistic anti-PCSK9 antibody exhibits target-mediated clearance, resulting in a dose-dependent PK. Results: Engineering of an antibody with pH-sensitive binding to PCSK9 decreases target-mediated clearance, resulting in increased PK and efficacy in vivo. Conclusion: pH-sensitive anti-PCSK9 antibodies are excellent candidates for therapeutic development. Significance: pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load. Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5–6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.


Cell Metabolism | 2016

A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects

Saswata Talukdar; Yingjiang Zhou; Dongmei Li; Michelle Rossulek; Jennifer Q. Dong; Veena R. Somayaji; Yan Weng; Ronald W. Clark; Adhiraj Lanba; Bryn M. Owen; Martin B. Brenner; Jeffrey K. Trimmer; Kathryn E. Gropp; Jeffrey R. Chabot; Derek M. Erion; Timothy P. Rolph; Bryan Goodwin; Roberto A. Calle

FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans.


PLOS ONE | 2015

Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice.

Yan Weng; Jeffrey R. Chabot; Barbara L. Bernardo; Qingyun Yan; Yimin Zhu; Martin B. Brenner; Chandra Vage; Alison Logan; Roberto A. Calle; Saswata Talukdar

Pharmacological administration of fibroblast growth factor 21 (FGF21) improves metabolic profile in preclinical species and humans. FGF21 exerts its metabolic effects through formation of beta-klotho (KLB)/FGF receptor 1c FGFR1c complex and subsequent signaling. Data from various in vitro systems demonstrate the intact C- and N-terminus of FGF21 is required for binding with KLB, and interaction with FGFR1c, respectively. However the relative roles of the termini for in vivo pharmacological effects are unclear. Here we report PF-05231023, a long-acting FGF21 analogue which is unique in that the half-life and subcutaneous (SC) bioavailability of the intact C-terminus are significantly different from those of the intact N-terminus (2 vs. 22 hr for half-life and 4~7 vs. ~50% SC bioavailability). Therefore, this molecule serves as a valuable tool to evaluate the relative roles of intact C-terminus vs. N-terminus in in vivo pharmacology studies in preclinical species. We determined the effects of PF-05231023 administration on body weight (BW) loss and glucose reduction during an oral glucose tolerance test (OGTT) following SC and intravenous (IV) administration in diet-induced obese (DIO) and leptin-deficient obese (ob/ob) mice, respectively. Our data show that the intact N-terminus of FGF21 in PF-05231023 appears to be sufficient to drive glucose lowering during OGTT and sustain BW loss in DIOs. Further, PK/PD modeling suggests that while the intact FGF21 C-terminus is not strictly required for glucose lowering during OGTT in ob/ob mice or for BW reduction in DIO mice, the higher potency conferred by intact C-terminus contributes to a rapid initiation of pharmacodynamic effects immediately following dosing. These results provide additional insight into the strategy of developing stabilized versions of FGF21 analogs to harness the full spectrum of its metabolic benefits.


Biotechnology Progress | 2008

Analysis of Mechanistic Pathway Models in Drug Discovery: p38 Pathway

Bart S. Hendriks; Fei Hua; Jeffrey R. Chabot

Mechanistic models of signal transduction have emerged as valuable tools for untangling complex signaling networks and gaining detailed insight into pathway dynamics. The natural extension of these tools is for the design of therapeutic strategies. We have generated a novel computational model of lipopolysaccharide‐induced p38 signaling in the context of TNF‐α production in inflammatory disease. Using experimental measurement of protein levels and phospho‐protein time courses, populations of model parameters were estimated. With a collection of parameter sets, reflecting virtual diversity, we step through analysis of the p38 signaling pathway model to answer specific drug discovery questions regarding target prioritization, inhibitor simulation, model robustness and co‐drugging. We demonstrate that target selection cannot be assessed independently from inhibitor mechanism of action and is also linked with robustness to cellular variability. Finally, we assert that in the face of parameter uncertainty one can still uncover consistent findings that can guide drug discovery efforts.


Diabetes, Obesity and Metabolism | 2017

Once-weekly administration of a long-acting FGF21 analogue modulates lipids, bone turnover markers, blood pressure, and body weight differently in obese hypertriglyceridemic subjects and in non-human primates

Albert M. Kim; Veena R. Somayaji; Jennifer Q. Dong; Timothy P. Rolph; Yan Weng; Jeffrey R. Chabot; Kathryn E. Gropp; Saswata Talukdar; Roberto A. Calle

To assess the safety, tolerability, pharmacokinetics and pharmacodynamics of PF‐05231023, a long‐acting fibroblast growth factor 21 (FGF21) analogue, in obese people with hypertriglyceridaemia on atorvastatin, with or without type 2 diabetes.


international conference of the ieee engineering in medicine and biology society | 2011

Comprehensive mechanism-based antibody pharmacokinetic modeling

Jeffrey R. Chabot; Danielle Dettling; Paul J. Jasper; Bruce Charles Gomes

Pharmacokinetic models of antibody distribution and dynamics are useful for predicting and optimizing therapeutic behavior. Targeted antigens are produced and distributed in various tissues in specific patterns in disease phenotypes. Existing models leave out significant mechanistic detail which would enable an understanding of how to modify therapeutics in an optimal manner to allow appropriate tissue penetration in either a healthy or diseased state. The model presented here incorporates additional complexity such as diffusion through endothelial barriers, differential transcytosis properties, FcRn-mediated recycling, and incorporates these properties in an organ-specific manner. This creates a platform which can be expanded upon to include understanding of the effect of target on therapeutic distribution and clearance, differences in dynamics during a diseased versus healthy state, differential dose strategies, and mechanistic translation between animal models and human disease state. This model represents a superior alternative to typical and potentially over-simplified scaling strategies utilized in most existing physiologically-based pharmacokinetic models. Ultimately, this will enable better therapeutic design and greater pharmacological effects.


British Journal of Pharmacology | 2017

Physiologically relevant binding affinity quantification of monoclonal antibody PF-00547659 to mucosal addressin cell adhesion molecule for in vitro in vivo correlation.

Mengmeng Wang; Amanda Kussrow; Mireia Fernandez Ocana; Jeffrey R. Chabot; Christopher Lepsy; Darryl J. Bornhop; Denise M. O'Hara

A monoclonal antibody (PF‐00547659) against mucosal addressin cell adhesion molecule (MAdCAM), expressed as both soluble (sMAdCAM) and trans‐membrane (mMAdCAM) target forms, showed over 30‐fold difference in antibody‐target KD between in vitro (Biacore) and clinically derived (KD,in‐vivo) values. Back‐scattering interferometry (BSI) was applied to acquire physiologically relevant KD values which were used to establish in vitro and in vivo correlation (IVIVC).


British Journal of Pharmacology | 2016

Physiologically Relevant Binding Affinity Quantification of Monoclonal Antibody PF‐00547659 to MAdCAM for In Vitro In Vivo Correlation

Mengmeng Wang; Amanda Kussrow; Mireia Fernandez Ocana; Jeffrey R. Chabot; Christopher Lepsy; Darryl J. Bornhop; Denise M. O'Hara

A monoclonal antibody (PF‐00547659) against mucosal addressin cell adhesion molecule (MAdCAM), expressed as both soluble (sMAdCAM) and trans‐membrane (mMAdCAM) target forms, showed over 30‐fold difference in antibody‐target KD between in vitro (Biacore) and clinically derived (KD,in‐vivo) values. Back‐scattering interferometry (BSI) was applied to acquire physiologically relevant KD values which were used to establish in vitro and in vivo correlation (IVIVC).


Drug Metabolism and Disposition | 2017

Examination of the Human Cytochrome P4503A4 Induction Potential of PF-06282999, an Irreversible Myeloperoxidase Inactivator: Integration of Preclinical, In Silico, and Biomarker Methodologies in the Prediction of the Clinical Outcome

Jennifer Q. Dong; James R. Gosset; Odette A. Fahmi; Zhiwu Lin; Jeffrey R. Chabot; Steven G. Terra; Vu Le; Kristin Chidsey; Parya Nouri; Albert M. Kim; Leonard Buckbinder; Amit S. Kalgutkar

The propensity for CYP3A4 induction by 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999), an irreversible inactivator of myeloperoxidase, was examined in the present study. Studies using human hepatocytes revealed moderate increases in CYP3A4 mRNA and midazolam-1′-hydroxylase activity in a PF-06282999 dose-dependent fashion. At the highest tested concentration of 300 μM, PF-06282999 caused maximal induction in CYP3A4 mRNA and enzyme activity ranging from 56% to 86% and 47% t0 72%, respectively, of rifampicin response across the three hepatocyte donor pools. In a clinical drug-drug interaction (DDI) study, the mean midazolam Cmax and area under the curve (AUC) values following 14-day treatment with PF-06282999 decreased in a dose-dependent fashion with a maximum decrease in midazolam AUC0–inf and Cmax of ∼57.2% and 41.1% observed at the 500 mg twice daily dose. The moderate impact on midazolam pharmacokinetics at the 500 mg twice daily dose of PF-06282999 was also reflected in statistically significant changes in plasma 4β-hydroxycholesterol/cholesterol and urinary 6β-hydroxycortisol/cortisol ratios. Changes in plasma and urinary CYP3A4 biomarkers did not reach statistical significance at the 125 mg three times daily dose of PF-06282999, despite a modest decrease in midazolam systemic exposure. Predicted DDI magnitude based on the in vitro induction parameters and simulated pharmacokinetics of perpetrator (PF-06282999) and victim (midazolam) using the Simcyp (Simcyp Ltd., Sheffield, United Kingdom) population-based simulator were in reasonable agreement with the observed clinical data. Since the magnitude of the 4β-hydroxycholesterol or 6β-hydroxycortisol ratio change was generally smaller than the magnitude of the midazolam AUC change with PF-06282999, a pharmacokinetic interaction study with midazolam ultimately proved important for assessment of DDI via CYP3A4 induction.

Collaboration


Dive into the Jeffrey R. Chabot's collaboration.

Top Co-Authors

Avatar

Arvind Rajpal

University of California

View shared research outputs
Top Co-Authors

Avatar

Hong Liang

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge