Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Dorfman is active.

Publication


Featured researches published by Jeffrey R. Dorfman.


Journal of Virology | 2015

Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency

Rajesh Abraham Jacob; Thandeka Moyo; Michael Schomaker; Fatima Abrahams; Berta Grau Pujol; Jeffrey R. Dorfman

ABSTRACT The membrane-proximal external region (MPER), the V2/glycan site (initially defined by PG9 and PG16 antibodies), and the V3/glycans (initially defined by PGT121–128 antibodies) are targets of broadly neutralizing antibodies and potential targets for anti-HIV-1 antibody-based vaccines. Recent evidence shows that antibodies with moderate neutralization breadth are frequently attainable, with 50% of sera from chronically infected individuals neutralizing ≥50% of a large, diverse set of viruses. Nonetheless, there is little systematic information addressing which specificities are preferentially targeted among such commonly found, moderately broadly neutralizing sera. We explored associations between neutralization breadth and potency and the presence of neutralizing antibodies targeting the MPER, V2/glycan site, and V3/glycans in sera from 177 antiretroviral-naive HIV-1-infected (>1 year) individuals. Recognition of both MPER and V3/glycans was associated with increased breadth and potency. MPER-recognizing sera neutralized 4.62 more panel viruses than MPER-negative sera (95% prediction interval [95% PI], 4.41 to 5.20), and V3/glycan-recognizing sera neutralized 3.24 more panel viruses than V3/glycan-negative sera (95% PI, 3.15 to 3.52). In contrast, V2/glycan site-recognizing sera neutralized only 0.38 more panel viruses (95% PI, 0.20 to 0.45) than V2/glycan site-negative sera and no association between V2/glycan site recognition and breadth or potency was observed. Despite autoreactivity of many neutralizing antibodies recognizing MPER and V3/glycans, antibodies to these sites are major contributors to neutralization breadth and potency in this cohort. It may therefore be appropriate to focus on developing immunogens based upon the MPER and V3/glycans. IMPORTANCE Previous candidate HIV vaccines have failed either to induce wide-coverage neutralizing antibodies or to substantially protect vaccinees. Therefore, current efforts focus on novel approaches never before successfully used in vaccine design, including modeling epitopes. Candidate immunogen models identified by broadly neutralizing antibodies include the membrane-proximal external region (MPER), V3/glycans, and the V2/glycan site. Autoreactivity and polyreactivity of anti-MPER and anti-V3/glycan antibodies are thought to pose both direct and indirect barriers to achieving neutralization breadth. We found that antibodies to the MPER and the V3/glycans contribute substantially to neutralization breadth and potency. In contrast, antibodies to the V2/glycan site were not associated with neutralization breadth/potency. This suggests that the autoreactivity effect is not critical and that the MPER and the V3/glycans should remain high-priority vaccine candidates. The V2/glycan site result is surprising because broadly neutralizing antibodies to this site have been repeatedly observed. Vaccine design priorities should shift toward the MPER and V3/glycans.


Retrovirology | 2017

The HIV-1 transmission bottleneck

Samuel Mundia Kariuki; Philippe. Selhorst; Kevin K. Ariën; Jeffrey R. Dorfman

It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient.


Journal of Virology | 2016

High Degree of HIV-1 group M Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution.

Marcel Tongo; Jeffrey R. Dorfman; Darren P. Martin

ABSTRACT The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56–61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the nine established HIV-1M subtypes. These lineages are likely to have been epidemiologically relevant in the Congo basin at the onset of the epidemic. Nonetheless, they appear not to have undergone the same explosive global spread as other HIV-1M subtypes, perhaps because they were less transmissible. Concerted efforts to characterize more of these divergent lineages could allow the accurate inference and chemical synthesis of epidemiologically key ancestral HIV-1M variants so as to directly test competing hypotheses relating to the viral genetic factors that enabled the present pandemic.


PLOS ONE | 2015

Incidence and risk factors for neonatal tetanus in admissions to Kilifi County Hospital, Kenya.

Fredrick Ibinda; Evasius Bauni; Symon M. Kariuki; Greg Fegan; Joy Lewa; Monica Mwikamba; Mwanamvua Boga; Rachael Odhiambo; Kiponda Mwagandi; Anna C Seale; James A. Berkley; Jeffrey R. Dorfman; Charles R. Newton

Background Neonatal Tetanus (NT) is a preventable cause of mortality and neurological sequelae that occurs at higher incidence in resource-poor countries, presumably because of low maternal immunisation rates and unhygienic cord care practices. We aimed to determine changes in the incidence of NT, characterize and investigate the associated risk factors and mortality in a prospective cohort study including all admissions over a 15-year period at a County hospital on the Kenyan coast, a region with relatively high historical NT rates within Kenya. Methods We assessed all neonatal admissions to Kilifi County Hospital in Kenya (1999–2013) and identified cases of NT (standard clinical case definition) admitted during this time. Poisson regression was used to examine change in incidence of NT using accurate denominator data from an area of active demographic surveillance. Logistic regression was used to investigate the risk factors for NT and factors associated with mortality in NT amongst neonatal admissions. A subset of sera from mothers (n = 61) and neonates (n = 47) were tested for anti-tetanus antibodies. Results There were 191 NT admissions, of whom 187 (98%) were home deliveries. Incidence of NT declined significantly (Incidence Rate Ratio: 0.85 (95% Confidence interval 0.81–0.89), P<0.001) but the case fatality (62%) did not change over the study period (P = 0.536). Younger infant age at admission (P = 0.001) was the only independent predictor of mortality. Compared to neonatal hospital admittee controls, the proportion of home births was higher among the cases. Sera tested for antitetanus antibodies showed most mothers (50/61, 82%) had undetectable levels of antitetanus antibodies, and most (8/9, 89%) mothers with detectable antibodies had a neonate without protective levels. Conclusions Incidence of NT in Kilifi County has significantly reduced, with reductions following immunisation campaigns. Our results suggest immunisation efforts are effective if sustained and efforts should continue to expand coverage.


Journal of Virology | 2012

Refined Identification of Neutralization-Resistant HIV-1 CRF02_AG Viruses

Rajesh Abraham Jacob; Fatima Abrahams; Marcel Tongo; Michael Schomaker; Paul Roux; Eitel Mpoudi Ngole; Wendy A. Burgers; Jeffrey R. Dorfman

ABSTRACT We studied neutralization of CRF02_AG HIV-1-infected plasma samples. In contrast to previous reports, these samples neutralized CRF02_AG viruses better than other viruses. This included six of eight CRF02_AG viruses previously designated resistant (tier 2/3 or 3). Only viruses 253-11 and 278-50 remained highly resistant, but they were sensitive to membrane-proximal external region (MPER)-specific monoclonal antibodies, suggesting neutralization targets for even these viruses. We propose using high-neutralizing-within-subtype samples for evaluation of neutralization resistance of viruses.


Evolution, medicine, and public health | 2015

Near full-length HIV type 1M genomic sequences from Cameroon Evidence of early diverging under-sampled lineages in the country

Marcel Tongo; Jeffrey R. Dorfman; Melissa-Rose Abrahams; Eitel Mpoudi-Ngole; Wendy A. Burgers; Darren P. Martin

Background: Cameroon is the country in which HIV-1 group M (HIV-1M) likely originated and is today a major hotspot of HIV-1M genetic diversity. It remains unclear, however, whether the highly divergent HIV-1M lineages found in this country arose during the earliest phases of the global HIV-1M epidemic, or whether they arose more recently as a result of recombination events between globally circulating HIV-1M lineages. Methodology: To differentiate between these two possibilities, we performed phylogenetic analyses of the near full genome sequences of nine newly sequenced divergent HIV-1M isolates and 15 previously identified, apparently unique recombinant forms (URFs) from Cameroon. Results: Although two of the new genome sequences were clearly classifiable within subtype G, the remaining seven were highly divergent and phylogenetically branched either outside of, or very near the bases of clades containing the well characterised globally circulating viral lineages that they were most closely related to. Recombination analyses further revealed that these divergent viruses were likely complex URFs. We show, however that substantial portions (>1 Kb) of three of the new genome sequences and 15 of the previously characterised Cameroonian URFs have apparently been derived from divergent parental viruses that branch phylogenetically near the bases of the major HIV-1M clades. Conclusions and implications: Our analyses indicate the presence in Cameroon of contemporary descendants of numerous early-diverging HIV-1M lineages. Further efforts to sample and sequence viruses from such lineages could be crucial both for retracing the earliest evolutionary steps during the emergence of HIV-1M in humans, and accurately reconstructing the ancestral sequences of the major globally circulating HIV-1M lineages.


Virology | 2017

Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies.

Thandeka Moyo; Roux-cil Ferreira; Reyaaz Davids; Zarinah Sonday; Penny L. Moore; Simon A. A. Travers; Natasha Wood; Jeffrey R. Dorfman

Glycans on HIV-1 Envelope serve multiple functions including blocking epitopes from antibodies. We show that removal of glycan 301, a major target of anti-V3/glycan antibodies, has substantially different effects in two viruses. While glycan 301 on Du156.12 blocks epitopes commonly recognized by sera from chronically HIV-1-infected individuals, it does not do so on CAP45.G3, suggesting that removing the 301 glycan has a smaller effect on the integrity of the glycan shield in CAP45.G3. Changes in sensitivity to broadly neutralizing monoclonal antibodies suggest that the interaction between glycan 301 and the CD4 binding site differ substantially between these 2 viruses. Molecular modeling suggests that removal of glycan 301 likely exposes a greater surface area of the V3 and C4 regions in Du156.12. Our data indicate that the contribution of the 301 glycan to resistance to common neutralizing antibodies varies between viruses, allowing for easier selection for its loss in some viruses.


Infection, Genetics and Evolution | 2015

Phylogenetics of HIV-1 subtype G env: Greater complexity and older origins than previously reported.

Marcel Tongo; René G. Essomba; Frederick Nindo; Fatima Abrahams; Aubin Nanfack; Joseph Fokam; Desire Takou; Judith N. Torimiro; Eitel Mpoudi-Ngole; Wendy A. Burgers; Darren P. Martin; Jeffrey R. Dorfman

HIV-1 subtype G has played an early and central role in the emergent complexity of the HIV-1 group M (HIV-1M) epidemic in central/west Africa. Here, we analysed new subtype G env sequences sampled from 8 individuals in Yaoundé, Cameroon during 2007-2010, together with all publically available subtype G-attributed full-length env sequences with known sampling dates and locations. We inferred that the most recent common ancestor (MRCA) of the analysed subtype G env sequences most likely occurred in ∼1953 (95% Highest Posterior Density interval [HPD] 1939-1963): about 15 years earlier than previous estimates. We found that the subtype G env phylogeny has a complex structure including seven distinct lineages, each likely dating back to the late 1960s or early 1970s. Sequences from Angola, Gabon and the Democratic Republic of Congo failed to group consistently in these lineages, possibly because they are related to more ancient sequences that are poorly sampled. The circulating recombinant form (CRF), CRF06_cpx env sequences but not CRF25_cpx env sequences are phylogenetically nested within the subtype G clade. This confirms that the CRF06_cpx env plausibly was derived through recombination from a subtype G parent, and suggests that the CRF25_cpx env was likely derived from an HIV-1M lineage related to the MRCA of subtype G that has remained undiscovered and may be extinct. Overall, this fills important gaps in our knowledge of the early events in the spread of HIV-1M.


Virus Evolution | 2018

Unravelling the complicated evolutionary and dissemination history of HIV-1M subtype A lineages

Marcel Tongo; Gordon William Harkins; Jeffrey R. Dorfman; Erik Billings; Sodsai Tovanabutra; Tulio de Oliveira; Darren P. Martin

Abstract Subtype A is one of the rare HIV-1 group M (HIV-1M) lineages that is both widely distributed throughout the world and persists at high frequencies in the Congo Basin (CB), the site where HIV-1M likely originated. This, together with its high degree of diversity suggests that subtype A is amongst the fittest HIV-1M lineages. Here we use a comprehensive set of published near full-length subtype A sequences and A-derived genome fragments from both circulating and unique recombinant forms (CRFs/URFs) to obtain some insights into how frequently these lineages have independently seeded HIV-1M sub-epidemics in different parts of the world. We do this by inferring when and where the major subtype A lineages and subtype A-derived CRFs originated. Following its origin in the CB during the 1940s, we track the diversification and recombination history of subtype A sequences before and during its dissemination throughout much of the world between the 1950s and 1970s. Collectively, the timings and numbers of detectable subtype A recombination and dissemination events, the present broad global distribution of the sub-epidemics that were seeded by these events, and the high prevalence of subtype A sequences within the regions where these sub-epidemics occurred, suggest that ancestral subtype A viruses (and particularly sub-subtype A1 ancestral viruses) may have been genetically predisposed to become major components of the present epidemic.


Scientific Reports | 2018

Structural rearrangements maintain the Glycan Shield of an HIV-1 envelope trimer after the loss of a glycan

Roux-cil Ferreira; Oliver C. Grant; Thandeka Moyo; Jeffrey R. Dorfman; Robert J. Woods; Simon A. A. Travers; Natasha Wood

The HIV-1 envelope (Env) glycoprotein is the primary target of the humoral immune response and a critical vaccine candidate. However, Env is densely glycosylated and thereby substantially protected from neutralisation. Importantly, glycan N301 shields V3 loop and CD4 binding site epitopes from neutralising antibodies. Here, we use molecular dynamics techniques to evaluate the structural rearrangements that maintain the protective qualities of the glycan shield after the loss of glycan N301. We examined a naturally occurring subtype C isolate and its N301A mutant; the mutant not only remained protected against neutralising antibodies targeting underlying epitopes, but also exhibited an increased resistance to the VRC01 class of broadly neutralising antibodies. Analysis of this mutant revealed several glycans that were responsible, independently or through synergy, for the neutralisation resistance of the mutant. These data provide detailed insight into the glycan shield’s ability to compensate for the loss of a glycan, as well as the cascade of glycan movements on a protomer, starting at the point mutation, that affects the integrity of an antibody epitope located at the edge of the diminishing effect. These results present key, previously overlooked, considerations for HIV-1 Env glycan research and related vaccine studies.

Collaboration


Dive into the Jeffrey R. Dorfman's collaboration.

Top Co-Authors

Avatar

Marcel Tongo

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fatima Abrahams

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha Wood

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar

Paul Roux

University of Cape Town

View shared research outputs
Top Co-Authors

Avatar

Tulio de Oliveira

University of KwaZulu-Natal

View shared research outputs
Researchain Logo
Decentralizing Knowledge