Jeffrey Regier
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeffrey Regier.
bioRxiv | 2018
Romain Lopez; Jeffrey Regier; Michael B. Cole; Michael I. Jordan; Nir Yosef
Transcriptome profiles of individual cells reflect true and often unexplored biological diversity, but are also affected by noise of biological and technical nature. This raises the need to explicitly model the resulting uncertainty and take it into account in any downstream analysis, such as dimensionality reduction, clustering, and differential expression. Here, we introduce Single-cell Variational Inference (scVI), a scalable framework for probabilistic representation and analysis of gene expression in single cells. Our model uses variational inference, stochastic optimization and deep neural networks to approximate the parameters that govern the distribution of expression values of each gene in every cell, using a non-linear mapping between the observations and a low-dimensional latent space. By doing so, scVI pools information between similar cells or genes while taking nuisance factors of variation such as batch effects and limited sensitivity into account. To evaluate scVI, we conducted a comprehensive comparative analysis to existing methods for distributional modeling and dimensionality reduction, all of which rely on generalized linear models. We first show that scVI scales to over one million cells, whereas competing algorithms can process at most tens of thousands of cells. Next, we show that scVI fits unseen data more closely and can impute missing data more accurately, both indicative of a better generalization capacity. We then utilize scVI to conduct a set of fundamental analysis tasks – including batch correction, visualization, clustering and differential expression – and demonstrate its accuracy in comparison to the state-of-the-art tools in each task. scVI is publicly available, and can be readily used as a principled and inclusive solution for multiple tasks of single-cell RNA sequencing data analysis.
arXiv: Methodology | 2015
Jeffrey Regier; Philip B. Stark
Consider approximating a “black box” function
Archive | 2007
Jeffrey Regier; Uri Avissar
f
neural information processing systems | 2018
Nilesh Tripuraneni; Mitchell Stern; Chi Jin; Jeffrey Regier; Michael I. Jordan
by an emulator
neural information processing systems | 2017
Jeffrey Regier; Michael I. Jordan; Jon McAuliffe
\hat{f}
international conference on machine learning | 2015
Jeffrey Regier; Andrew C. Miller; Jon McAuliffe; Ryan P. Adams; Matthew D. Hoffman; Dustin Lang; David J. Schlegel; Prabhat
based on
arXiv: Learning | 2017
Romain Lopez; Jeffrey Regier; Michael I. Jordan; Nir Yosef
n
arXiv: Learning | 2017
Romain Lopez; Jeffrey Regier; Michael W. Cole; Michael I. Jordan; Nir Yosef
noiseless observations of
arXiv: Distributed, Parallel, and Cluster Computing | 2016
Jeffrey Regier; Kiran Pamnany; Ryan Giordano; Rollin C. Thomas; David J. Schlegel; Jon McAuliffe; Prabhat
f
neural information processing systems | 2015
Andrew C. Miller; Albert Y. Wu; Jeffrey Regier; Jon McAuliffe; Dustin Lang; Prabhat; David J. Schlegel; Ryan P. Adams
. Let