Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Roger Roppe is active.

Publication


Featured researches published by Jeffrey Roger Roppe.


Bioorganic & Medicinal Chemistry Letters | 2003

[3H]-Methoxymethyl-MTEP and [3H]-methoxy-PEPy: Potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor

Nicholas Cosford; Jeffrey Roger Roppe; Lida Tehrani; Edwin J. Schweiger; T.Jon Seiders; Ashok Chaudary; Sara Rao; Mark Varney

The design, synthesis, and characterization of two potent, non-competitive radioligands, [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy, that are selective for the mGlu5 receptor are described.


European Journal of Pharmacology | 2003

In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine)

Jeffery J. Anderson; Margaret J. Bradbury; Darlene R. Giracello; Deborah F. Chapman; Greg Holtz; Jeffrey Roger Roppe; Christopher King; Nicholas Cosford; Mark Varney

In vivo receptor occupancy of mGlu5 receptor antagonists was quantified in rat and mouse brain using the mGlu5 receptor selective antagonist [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine) ([3H]methoxy-PEPy). Administration of [3H]methoxy-PEPy (50 microCi/kg i.v.) to mGlu5 receptor-deficient mice revealed binding at background levels in forebrain, whereas wild-type mice exhibited 14-fold higher binding in forebrain relative to cerebellum. Systemic administration of the mGlu5 receptor antagonists 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) reduced the binding of [3H]methoxy-PEPy in rats and mice, reflecting mGlu5 receptor occupancy by these compounds. MPEP (10 mg/kg i.p.) and MTEP (3 mg/kg i.p.) maintained >75% receptor occupancy for 2 h in rats, while in mice MPEP and MTEP achieved >75% occupancy for only 30 and 15 min, respectively. Compound levels in plasma were substantially lower in mice suggesting species differences in receptor occupancy result from differences in absorption or metabolism of the compounds. These findings demonstrate that [3H]methoxy-PEPy is useful for determining the occupancy of mGlu5 receptors in the brain.


Journal of Pharmacology and Experimental Therapeutics | 2011

Pharmacokinetic and Pharmacodynamic Characterization of an Oral Lysophosphatidic Acid Type 1 Receptor-Selective Antagonist

James S. Swaney; Charles Chapman; Lucia Correa; Karin Stebbins; Alex R. Broadhead; Gretchen Bain; Angelina M. Santini; Janice Darlington; Christopher King; Chris Baccei; Catherine Lee; Timothy Parr; Jeffrey Roger Roppe; Thomas Jon Seiders; Jeannie Ziff; Peppi Prasit; John H. Hutchinson; Jilly F. Evans; Daniel S. Lorrain

Lysophosphatidic acid (LPA) is a bioactive phospholipid that signals through a family of at least six G protein-coupled receptors designated LPA1–6. LPA type 1 receptor (LPA1) exhibits widespread tissue distribution and regulates a variety of physiological and pathological cellular functions. Here, we evaluated the in vitro pharmacology, pharmacokinetic, and pharmacodynamic properties of the LPA1-selective antagonist AM095 (sodium, {4′-[3-methyl-4-((R)-1-phenyl-ethoxycarbonylamino)-isoxazol-5-yl]-biphenyl-4-yl}-acetate) and assessed the effects of AM095 in rodent models of lung and kidney fibrosis and dermal wound healing. In vitro, AM095 was a potent LPA1 receptor antagonist because it inhibited GTPγS binding to Chinese hamster ovary (CHO) cell membranes overexpressing recombinant human or mouse LPA1 with IC50 values of 0.98 and 0.73 μM, respectively, and exhibited no LPA1 agonism. In functional assays, AM095 inhibited LPA-driven chemotaxis of CHO cells overexpressing mouse LPA1 (IC50 = 778 nM) and human A2058 melanoma cells (IC50 = 233 nM). In vivo, we demonstrated that AM095: 1) had high oral bioavailability and a moderate half-life and was well tolerated at the doses tested in rats and dogs after oral and intravenous dosing, 2) dose-dependently reduced LPA-stimulated histamine release, 3) attenuated bleomycin-induced increases in collagen, protein, and inflammatory cell infiltration in bronchalveolar lavage fluid, and 4) decreased kidney fibrosis in a mouse unilateral ureteral obstruction model. Despite its antifibrotic activity, AM095 had no effect on normal wound healing after incisional and excisional wounding in rats. These data demonstrate that AM095 is an LPA1 receptor antagonist with good oral exposure and antifibrotic activity in rodent models.


Journal of Medicinal Chemistry | 2009

Discovery of Inducible Nitric Oxide Synthase (iNOS) Inhibitor Development Candidate KD7332, Part 1: Identification of a Novel, Potent, and Selective Series of Quinolinone iNOS Dimerization Inhibitors that are Orally Active in Rodent Pain Models

Celine Bonnefous; Joseph E. Payne; Jeffrey Roger Roppe; Hui Zhuang; Xiaohong Chen; Kent T. Symons; Phan M. Nguyen; Marciano Sablad; Natasha Rozenkrants; Yan Zhang; Li Wang; Daniel L. Severance; John P. Walsh; Nahid Yazdani; Andrew K. Shiau; Stewart A. Noble; Peter Rix; Tadimeti S. Rao; Christian A. Hassig; Nicholas D. Smith

There are three isoforms of dimeric nitric oxide synthases (NOS) that convert arginine to citrulline and nitric oxide. Inducible NOS is implicated in numerous inflammatory diseases and, more recently, in neuropathic pain states. The majority of existing NOS inhibitors are either based on the structure of arginine or are substrate competitive. We describe the identification from an ultra high-throughput screen of a novel series of quinolinone small molecule, nonarginine iNOS dimerization inhibitors. SAR studies on the screening hit, coupled with an in vivo lipopolysaccharide (LPS) challenge assay measuring plasma nitrates and drug levels, rapidly led to the identification of compounds 12 and 42--potent inhibitors of the human and mouse iNOS enzyme that were highly selective over endothelial NOS (eNOS). Following oral dosing, compounds 12 and 42 gave a statistical reduction in pain behaviors in the mouse formalin model, while 12 also statistically reduced neuropathic pain behaviors in the chronic constriction injury (Bennett) model.


Journal of Medicinal Chemistry | 2011

5-Lipoxygenase-Activating Protein (FLAP) Inhibitors. Part 4: Development of 3-[3-tert-Butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic Acid (AM803), a Potent, Oral, Once Daily FLAP Inhibitor

Nicholas Simon Stock; Gretchen Bain; Jasmine Zunic; Yiwei Li; Jeannie Ziff; Jeffrey Roger Roppe; Angelina M. Santini; Janice Darlington; Pat Prodanovich; Christopher King; Christopher Baccei; Catherine Lee; Haojing Rong; Charles Chapman; Alex R. Broadhead; Dan Lorrain; Lucia Correa; John H. Hutchinson; Jilly F. Evans; Peppi Prasit

The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc is described (AM803, now GSK2190915). Building upon AM103 (1) (Hutchinson et al. J. Med Chem.2009, 52, 5803-5815; Stock et al. Bioorg. Med. Chem. Lett. 2010, 20, 213-217; Stock et al. Bioorg. Med. Chem. Lett.2010, 20, 4598-4601), SAR studies centering around the pyridine moiety led to the discovery of compounds that exhibit significantly increased potency in a human whole blood assay measuring LTB(4) inhibition with longer drug preincubation times (15 min vs 5 h). Further studies identified 11cc with a potency of 2.9 nM in FLAP binding, an IC(50) of 76 nM for inhibition of LTB(4) in human blood (5 h incubation) and excellent preclinical toxicology and pharmacokinetics in rat and dog. 11cc also demonstrated an extended pharmacodynamic effect in a rodent bronchoalveolar lavage (BAL) model. This compound has successfully completed phase 1 clinical studies in healthy volunteers and is currently undergoing phase 2 trials in asthmatic patients.


European Journal of Pharmacology | 2010

Pharmacology of AM803, a novel selective five-lipoxygenase-activating protein (FLAP) inhibitor in rodent models of acute inflammation

Daniel S. Lorrain; Gretchen Bain; Lucia Correa; Charles Chapman; Alex R. Broadhead; Angelina M. Santini; Patricia Prodanovich; Janice Darlington; Nicholas Simon Stock; Jasmine Zunic; Christopher King; Catherine Lee; Christopher Baccei; Brian Andrew Stearns; Jeffrey Roger Roppe; John H. Hutchinson; Peppi Prasit; Jilly F. Evans

We evaluated the in vivo pharmacological properties of AM803 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, a selective five-lipoxygenase-activating protein (FLAP) inhibitor, using rat and mouse models of acute inflammation. Oral administration of AM803 (1 mg/kg) resulted in sustained inhibition of ex vivo ionophore-challenged whole blood LTB4 biosynthesis with >90% inhibition for up to 12 h and an EC50 of approximately 7 nM. When rat lungs were challenged in vivo with calcium-ionophore, AM803 inhibited LTB4 and cysteinyl leukotriene (CysLT) production with ED50s of 0.12 mg/kg and 0.37 mg/kg, respectively. The inhibition measured 16 h following a single oral dose of 3 mg/kg was 86% and 41% for LTB4 and CysLTs, respectively. In an acute inflammation setting, AM803 dose-dependently reduced LTB4, CysLTs, plasma protein extravasation and neutrophil influx induced by peritoneal zymosan injection. Finally, AM803 increased survival time in mice exposed to a lethal intravenous injection of platelet activating factor (PAF). The magnitude of effect was similar to that of an inhibitor of five-lipoxygenase (5-LO) and LTA4 hydrolase but superior to a leukotriene CysLT1 receptor antagonist. In summary, AM803 is a novel, potent and selective FLAP inhibitor that has excellent pharmacodynamic properties in vivo and is effective in animal models of acute inflammation and in a model of lethal shock.


Bioorganic & Medicinal Chemistry Letters | 2011

Sodium [2'-[(cyclopropanecarbonyl-ethyl-amino)-methyl]-4'-(6-ethoxy-pyridin-3-yl)-6-methoxy-biphenyl-3-yl]-acetate (AM432): a potent, selective prostaglandin D2 receptor antagonist.

Nicholas Simon Stock; Deborah Volkots; Karin Stebbins; Alex R. Broadhead; Brian Andrew Stearns; Jeffrey Roger Roppe; Timothy Parr; Christopher Baccei; Gretchen Bain; Charles Chapman; Lucia Correa; Janice Darlington; Christopher King; Catherine Lee; Daniel S. Lorrain; Pat Prodanovich; Angelina M. Santini; Jilly F. Evans; John H. Hutchinson; Peppi Prasit

Compound 21 (AM432) was identified as a potent and selective antagonist of the DP(2) receptor (CRTH2). Modification of a bi-aryl core identified a series of tri-aryl antagonists of which compound 21 proved a viable clinical candidate. AM432 shows excellent potency in a human whole blood eosinophil shape change assay with prolonged incubation, a comparatively long off-rate from the DP(2) receptor, excellent pharmacokinetics in dog and in vivo activity in two mouse models of inflammatory disease after oral dosing.


Molecular Pharmacology | 2009

KLYP956 is a Non-imidazole-Based Orally Active Inhibitor of Nitric Oxide Synthase Dimerization

Kent T. Symons; Mark E. Massari; Phan M. Nguyen; Tom T. Lee; Jeffrey Roger Roppe; Celine Bonnefous; Joseph E. Payne; Nicholas D. Smith; Stewart A. Noble; Marciano Sablad; Natasha Rozenkrants; Yan Zhang; Tadimeti S. Rao; Andrew K. Shiau; Christian A. Hassig

Nitric-oxide synthases (NOS) generate nitric oxide (NO) through the oxidation of l-arginine. Inappropriate or excessive production of NO by NOS is associated with the pathophysiology of various disease states. Efforts to treat these disorders by developing arginine mimetic, substrate-competitive NOS inhibitors as drugs have met with little success. Small-molecule-mediated inhibition of NOS dimerization represents an intriguing alternative to substrate-competitive inhibition. An ultra-high-throughput cell-based screen of 880,000 small molecules identified a novel quinolinone with inducible NOS (iNOS) inhibitory activity. Exploratory chemistry based on this initial screening hit resulted in the synthesis of KLYP956, which inhibits iNOS at low nanomolar concentrations. The iNOS inhibitory potency of KLYP956 is insensitive to changes in concentrations of the substrate arginine, or the cofactor tetrahydrobiopterin. Mechanistic analysis suggests that KLYP956 binds the oxygenase domain in the vicinity of the active site heme and inhibits iNOS and neuronal NOS (nNOS) by preventing the formation of enzymatically active dimers. Oral administration of KLYP956 [N-(3-chlorophenyl)-N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide] inhibits iNOS activity in a murine model of endotoxemia and blocks pain behaviors in a formalin model of nociception. KLYP956 thus represents the first nonimidazole-based inhibitor of iNOS and nNOS dimerization and provides a novel pharmaceutical alternative to previously described substrate competitive inhibitors.


Journal of Medicinal Chemistry | 2003

3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity.

Nicholas D. P. Cosford; Lida Tehrani; Jeffrey Roger Roppe; Edwin J. Schweiger; Nicholas D. Smith; Jeffrey Anderson; Linda J. Bristow; Jesse Brodkin; Xiaohui Jiang; Ian A. McDonald; Sara Rao; Mark S. Washburn; Mark A. Varney


Synapse | 2005

Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers

Terence G. Hamill; Stephen Krause; Christine Ryan; Celine Bonnefous; Steve Govek; T. Jon Seiders; Nicholas Cosford; Jeffrey Roger Roppe; Theodore M. Kamenecka; Shil Patel; Raymond E. Gibson; Sandra Sanabria; Kerry Riffel; Wai-si Eng; Christopher King; Xiaoqing Yang; Mitchell D. Green; Stacey O'Malley; Richard Hargreaves; H. Donald Burns

Collaboration


Dive into the Jeffrey Roger Roppe's collaboration.

Top Co-Authors

Avatar

John Howard Hutchinson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge