Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Cosford is active.

Publication


Featured researches published by Nicholas Cosford.


Bioorganic & Medicinal Chemistry Letters | 2003

[3H]-Methoxymethyl-MTEP and [3H]-methoxy-PEPy: Potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor

Nicholas Cosford; Jeffrey Roger Roppe; Lida Tehrani; Edwin J. Schweiger; T.Jon Seiders; Ashok Chaudary; Sara Rao; Mark Varney

The design, synthesis, and characterization of two potent, non-competitive radioligands, [3H]-methoxymethyl-MTEP and [3H]-methoxy-PEPy, that are selective for the mGlu5 receptor are described.


European Journal of Pharmacology | 2003

In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine)

Jeffery J. Anderson; Margaret J. Bradbury; Darlene R. Giracello; Deborah F. Chapman; Greg Holtz; Jeffrey Roger Roppe; Christopher King; Nicholas Cosford; Mark Varney

In vivo receptor occupancy of mGlu5 receptor antagonists was quantified in rat and mouse brain using the mGlu5 receptor selective antagonist [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine) ([3H]methoxy-PEPy). Administration of [3H]methoxy-PEPy (50 microCi/kg i.v.) to mGlu5 receptor-deficient mice revealed binding at background levels in forebrain, whereas wild-type mice exhibited 14-fold higher binding in forebrain relative to cerebellum. Systemic administration of the mGlu5 receptor antagonists 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) reduced the binding of [3H]methoxy-PEPy in rats and mice, reflecting mGlu5 receptor occupancy by these compounds. MPEP (10 mg/kg i.p.) and MTEP (3 mg/kg i.p.) maintained >75% receptor occupancy for 2 h in rats, while in mice MPEP and MTEP achieved >75% occupancy for only 30 and 15 min, respectively. Compound levels in plasma were substantially lower in mice suggesting species differences in receptor occupancy result from differences in absorption or metabolism of the compounds. These findings demonstrate that [3H]methoxy-PEPy is useful for determining the occupancy of mGlu5 receptors in the brain.


Neuropharmacology | 2004

Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABAA signaling

Aleksandra Kłodzińska; Ewa Tatarczyńska; Ewa Chojnacka-Wójcik; Gabriel Nowak; Nicholas Cosford; Andrzej Pilc

Abstract Several lines of evidence suggest a crucial involvement of glutamate in the mechanism of action of anxiolytic drugs including the involvement of group I metabotropic glutamate (mGlu) receptors. Given the recent discovery of a selective and brain penetrable mGlu5 receptor antagonists, the effect of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP), i.e. the most potent mGlu5 antagonist, was evaluated in established models of anxiety after single or repeated administration. We also studied if the anxiolytic effect of MTEP is mediated by mechanism involving the GABA–benzodiazepine (BZD) receptor complex. Experiments were performed on male Wistar rats or male Albino Swiss mice. The anxiolytic-like effects of MTEP were tested in the conflict drinking test and the elevated plus-maze test in rats as well as in the four-plate test in mice. MTEP (0.3–3.0 mg/kg) induced anxiolytic-like effects in the conflict drinking test (after single and repeated administration) and in the elevated plus-maze test in rats. In the four-plate test in mice, it exerted anxiolytic activity at a dose of 20 mg/kg. MTEP had no effect on the locomotor activity of animals. The anxiolytic-like effect of MTEP was not changed by BZD antagonist flumazenil. Moreover, a synergistic interaction between non-effective doses of MTEP and diazepam was observed in the conflict drinking test. These data suggest that selective mGlu5 receptor antagonists mediated anxiolysis is not dependent on GABA-ergic system and that these agents may play a role in the therapy of anxiety.


Bioorganic & Medicinal Chemistry Letters | 2009

Allosteric inhibitors of Akt1 and Akt2: discovery of [1,2,4]triazolo[3,4-f][1,6]naphthyridines with potent and balanced activity.

Yiwei Li; Jun Liang; Tony Siu; Essa Hu; Michael A. Rossi; Stanley F. Barnett; Deborah Defeo-Jones; Raymond E. Jones; Ronald G. Robinson; Karen R. Leander; Hans E. Huber; Sachin Mittal; Nicholas Cosford; Peppi Prasit

A series of [1,2,4]triazolo[3,4-f][1,6]naphthyridine allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been shown to have potent dual Akt1 and 2 cell potency. The representative compound 13 provided potent inhibitory activity against Akt1 and 2 in vivo in a mouse model.


ACS Chemical Neuroscience | 2011

Recent Progress in the Synthesis and Characterization of Group II Metabotropic Glutamate Receptor Allosteric Modulators

Douglas J. Sheffler; Anthony B. Pinkerton; Russell Dahl; Athina Markou; Nicholas Cosford

Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors.


Pharmaceutica Acta Helvetiae | 2000

Recombinant human receptors and functional assays in the discovery of altinicline (SIB-1508Y), a novel acetylcholine-gated ion channel (nAChR) agonist

Nicholas Cosford; Leo Bleicher; Jean-Michel Vernier; Laura E. Chavez-Noriega; Tadimeti S. Rao; Robert Siegel; Carla Suto; Mark S. Washburn; G.Kenneth Lloyd; Ian McDonald

Neuronal nicotinic acetylcholine receptors (nAChRs) are a class of ion channels with significant potential as molecular targets for the design of drugs to treat a variety of CNS disorders. The discovery that neuronal nAChRs are further subdivided into multiple subtypes suggests that drugs which act selectively at specific nAChR subtypes might effectively treat Parkinsons disease (PD), Alzheimers disease (AD), schizophrenia, ADHD, depression, anxiety or pain without the accompanying adverse side effects associated with non-selective agents such as nicotine (1) and epibatidine. Altinicline (SIB-1508Y) is a novel, small molecule designed to selectively activate neuronal nAChRs and is undergoing clinical evaluation for the treatment of PD. It was selected from a series of compounds primarily on the basis of results from functional assays, including (a) measurement of Ca2+ flux in stable cell lines expressing specific recombinant human neuronal nAChR subtypes; (b) determination of in vitro and in vivo neurotransmitter release; (c) in vivo models of PD. Biological data on both altinicline and the series of compounds from which it was selected are reported.


ACS Chemical Neuroscience | 2015

Benzodiazepinone Derivatives Protect against Endoplasmic Reticulum Stress-Mediated Cell Death in Human Neuronal Cell Lines

Haixia Zou; Allison S. Limpert; Jiwen Zou; Anna Dembo; Pooi-San Lee; Daniel Grant; Robert Ardecky; Anthony B. Pinkerton; Gavin Magnuson; Mark E. Goldman; Juan Rong; Peter Teriete; Douglas J. Sheffler; John C. Reed; Nicholas Cosford

Endoplasmic reticulum (ER) stress causes neuronal dysfunction followed by cell death and is recognized as a feature of many neurodegenerative diseases. Using a phenotypic screen, we recently identified benzodiazepinone derivatives that reduce ER stress-mediated apoptosis in a rat neuronal progenitor cell line (CSM14.1). Herein we describe how structure–activity relationship (SAR) studies around these screening hits led to compounds that display robust cytoprotective activity against thapsigargin-induced ER stress in SH-SY5Y and H4 human neuronal cell lines. We demonstrate that the most potent of these derivatives, compound 4hh, inhibits the activation of p38 MAP kinase (p38) and c-Jun N-terminal kinase (JNK), protein kinases that are downstream signal effectors of the unfolded protein response (UPR). Compound 4hh specifically protects against thapsigargin-induced cell death and displays no protection against other insults known to induce cellular stress or activate p38. However, compound 4hh provides moderate inhibition of p38 activity stimulated by compounds that disrupt calcium homeostasis. Our data indicate that probe compound 4hh is a valuable small molecule tool that can be used to investigate the effects of ER stress on human neurons. This approach may provide the basis for the future development of therapeutics for the treatment of neurodegenerative diseases.


Brain Research | 2008

Pharmacological characterization of (S)-(2)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine HCl (SIB-1508Y, Altinicline), a novel nicotinic acetylcholine receptor agonist.

Tadimeti S. Rao; Pamala B. Adams; Lucia Correa; Emily M. Santori; Aida I. Sacaan; Richard T. Reid; Nicholas Cosford

(S)-(2)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine HCl (SIB-1508Y, Altinicline), is a subtype-selective neuronal nicotinic acetylcholine receptor (nAChR) agonist. In rodents, SIB-1508Y exhibited antidepressant activity, reversed age-related decrements in vigilance, and improved motor and cognitive function in primate models of Parkinsons disease. The goal of the study was to explore neurochemical effects of SIB-1508Y and its isomer, SIB-1680WD. In vitro, SIB-1508Y increased dopamine (DA) release from slices of rat striatum, nucleus accumbens (NAc), olfactory tubercles (OT) and prefrontal cortices (PFC) in a concentration-dependent manner. Relative to its robust effects on DA release from various brain regions, SIB-1508Y was minimally effective at increasing NE release from hippocampus or PFC, and 5-HT release from PFC. SIB-1680WD was less potent and efficacious than SIB-1508Y, but did not act as a partial agonist. Subcutaneous injection of SIB-1508Y (10 mg/kg) increased striatal DA release and this release was sensitive to blockade by the non-competitive nAChR antagonist, mecamylamine (Mec). SIB-1508Y also increased hippocampal ACh release selectively without affecting striatal ACh release. Hippocampal ACh release evoked by SIB-1508Y was attenuated by nAChR antagonists Mec and Dihydro-beta-erythroidine (DHbetaE), and also by the DA D1 receptor antagonist, SCH-23390. These results are consistent with previously established pharmacology of nAChR regulation of hippocampal ACh release. Repeated administration of SIB-1508Y did not result in an enhanced striatal DA release or hippocampal ACh release. In summary, the abilities of SIB-1508Y to release multiple neurotransmitters in distinct brain regions may contribute to its behavioral profile.


ACS Chemical Neuroscience | 2017

Synthesis and Preliminary Studies of a Novel Negative Allosteric Modulator, 7-((2,5-Dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide, for Imaging of Metabotropic Glutamate Receptor 2

Xiaofei Zhang; Katsushi Kumata; Tomoteru Yamasaki; Ran Cheng; Akiko Hatori; Longle Ma; Yiding Zhang; Lin Xie; Lu Wang; Hye Jin Kang; Douglas J. Sheffler; Nicholas Cosford; Ming-Rong Zhang; Steven H. Liang

Metabotropic glutamate 2 receptors (mGlu2) are involved in the pathogenesis of several CNS disorders and neurodegenerative diseases. Pharmacological modulation of this target represents a potential disease-modifying approach for the treatment of substance abuse, depression, schizophrenia, and dementias. While quantification of mGlu2 receptors in the living brain by positron emission tomography (PET) would help us better understand signaling pathways relevant to these conditions, few successful examples have been demonstrated to image mGlu2 in vivo, and a suitable PET tracer is yet to be identified. Herein we report the design and synthesis of a radiolabeled negative allosteric modulator (NAM) for mGlu2 PET tracer development based on a quinoline 2-carboxamide scaffold. The most promising candidate, 7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[11C]methoxyphenyl) quinoline-2-carboxamide ([11C]QCA) was prepared in 13% radiochemical yield (non-decay-corrected at the end of synthesis) with >99% radiochemical purity and >74 GBq/μmol (2 Ci/μmol) specific activity. While the tracer showed limited brain uptake (0.3 SUV), probably attributable to effects on PgP/Bcrp efflux pump, in vitro autoradiography studies demonstrated heterogeneous brain distribution and specific binding. Thus, [11C]QCA is a chemical probe that provides the basis for the development of a new generation mGlu2 PET tracers.


Synapse | 2005

Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers

Terence G. Hamill; Stephen Krause; Christine Ryan; Celine Bonnefous; Steve Govek; T. Jon Seiders; Nicholas Cosford; Jeffrey Roger Roppe; Theodore M. Kamenecka; Shil Patel; Raymond E. Gibson; Sandra Sanabria; Kerry Riffel; Wai-si Eng; Christopher King; Xiaoqing Yang; Mitchell D. Green; Stacey O'Malley; Richard Hargreaves; H. Donald Burns

Collaboration


Dive into the Nicholas Cosford's collaboration.

Top Co-Authors

Avatar

José Luis Millán

National Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge