Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey S. Bull is active.

Publication


Featured researches published by Jeffrey S. Bull.


Nuclear Technology | 2012

Initial MCNP6 Release Overview

Tim Goorley; Michael R. James; Thomas E. Booth; Forrest B. Brown; Jeffrey S. Bull; L.J. Cox; Joe W. Durkee; Jay S. Elson; Michael L Fensin; R.A. Forster; John S. Hendricks; H.G. Hughes; Russell C. Johns; B. Kiedrowski; Roger L. Martz; S. G. Mashnik; Gregg W. McKinney; Denise B. Pelowitz; R. E. Prael; J. Sweezy; Laurie S. Waters; Trevor Wilcox; T. Zukaitis

MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of those two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory’s (LANL) X Computational Physics Division, Monte Carlo Codes Group (XCP-3), and Decision Applications Division, Radiation Transport and Applications Team (D-5), respectively, have combined their code development efforts to produce the next evolution of MCNP. While maintenance and bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. In fact, the initial release of MCNP6 contains 16 new features not previously found in either code. These new features include the abilities to import unstructured mesh geometries from the finite element code Abaqus, to transport photons down to 1.0 eV, to transport electrons down to 10.0 eV, to model complete atomic relaxation emissions, and to generate or read mesh geometries for use with the LANL discrete ordinates code Partisn. The first release of MCNP6, MCNP6 Beta 2, is now available through the Radiation Safety Information Computational Center, and the first production release is expected in calendar year 2012. High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, the regression test suite, its code development process, and the underlying high-quality nuclear and atomic databases.


Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2004

MCNP™ Version 5

R.Arthur Forster; L.J. Cox; Richard Barrett; Thomas E. Booth; Judith F. Briesmeister; Forrest B. Brown; Jeffrey S. Bull; Gregg C Geisler; John T. Goorley; Russell D. Mosteller; Susan E Post; R. E. Prael; Elizabeth Carol Selcow; Avneet Sood

Abstract The Monte Carlo transport workhorse, MCNP [Los Alamos National Laboratory report LA-13709-M, 2000], is undergoing a massive renovation at Los Alamos National Laboratory (LANL) in support of the Eolus Project of the Advanced Simulation and Computing (ASCI) Program. MCNP 1 Version 5 (V5) (expected to be released to RSICC in Fall 2002) will consist of a major restructuring from FORTRAN-77 (with extensions) to ANSI-standard FORTRAN-90 [American National Standard for Programming Language – Fortran-Extended, ANSI X3. 198-1992, 1992] with support for all of the features available in the present release (MCNP-4C2/4C3). To most users, the look-and-feel of MCNP will not change much except for the improvements (improved graphics, easier installation, better online documentation). For example, even with the major format change, full support for incremental patching will still be provided. In addition to the language and style updates, MCNP V5 will have various new user features. These include improved photon physics, neutral particle radiography, enhancements and additions to variance reduction methods, new source options, improved parallelism support (PVM, MPI, OpenMP), and new nuclear and atomic data libraries.


Physical Review C | 2017

Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6

S. G. Mashnik; Leslie M. Kerby; Konstantin Gudima; Arnold J. Sierk; Jeffrey S. Bull; Michael R. James

We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte-Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi break-up, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi break-up model and choose the best option for these models. Then, we extend the modified exciton model (MEM) used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A < 8, in the case of CEM, and A < 13, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Finally, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.


arXiv: Nuclear Experiment | 2013

Current status of MCNP6 as a simulation tool useful for space and accelerator applications

S. G. Mashnik; Jeffrey S. Bull; H. G. Hughes; R. E. Prael; Arnold J. Sierk

For the past several years, a major effort has been undertaken at Los Alamos National Laboratory (LANL) to develop the transport code MCNP6, the latest LANL Monte-Carlo transport code representing a merger and improvement of MCNP5 and MCNPX. We emphasize a description of the latest developments of MCNP6 at higher energies to improve its reliability in calculating rare-isotope production, high-energy cumulative particle production, and a gamut of reactions important for space-radiation shielding, cosmic-ray propagation, and accelerator applications. We present several examples of validation and verification of MCNP6 compared to a wide variety of intermediate- and high-energy experimental data on reactions induced by photons, mesons, nucleons, and nuclei at energies from tens of MeV to about 1 TeV/nucleon, and compare to results from other modern simulation tools.


Physical Review C | 2017

Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6 [Production of energetic light fragments in CEM, LAQGSM, and MCNP6]

S. G. Mashnik; Leslie M. Kerby; Konstantin Gudima; Arnold J. Sierk; Jeffrey S. Bull; Michael R. James

We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte-Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi break-up, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi break-up model and choose the best option for these models. Then, we extend the modified exciton model (MEM) used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A < 8, in the case of CEM, and A < 13, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Finally, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.


Physical Review C | 2016

Production of Energetic Light Fragments in CEM, LAQGSM, and MCNP6

S. G. Mashnik; Leslie M. Kerby; Konstantin Gudima; Arnold J. Sierk; Jeffrey S. Bull; Michael R. James

We extend the cascade-exciton model (CEM), and the Los Alamos version of the quark-gluon string model (LAQGSM), event generators of the Monte-Carlo N-particle transport code version 6 (MCNP6), to describe production of energetic light fragments (LF) heavier than 4He from various nuclear reactions induced by particles and nuclei at energies up to about 1 TeV/nucleon. In these models, energetic LF can be produced via Fermi break-up, preequilibrium emission, and coalescence of cascade particles. Initially, we study several variations of the Fermi break-up model and choose the best option for these models. Then, we extend the modified exciton model (MEM) used by these codes to account for a possibility of multiple emission of up to 66 types of particles and LF (up to 28Mg) at the preequilibrium stage of reactions. Then, we expand the coalescence model to allow coalescence of LF from nucleons emitted at the intranuclear cascade stage of reactions and from lighter clusters, up to fragments with mass numbers A < 8, in the case of CEM, and A < 13, in the case of LAQGSM. Next, we modify MCNP6 to allow calculating and outputting spectra of LF and heavier products with arbitrary mass and charge numbers. The improved version of CEM is implemented into MCNP6. Finally, we test the improved versions of CEM, LAQGSM, and MCNP6 on a variety of measured nuclear reactions. The modified codes give an improved description of energetic LF from particle- and nucleus-induced reactions; showing a good agreement with a variety of available experimental data. They have an improved predictive power compared to the previous versions and can be used as reliable tools in simulating applications involving such types of reactions.


Archive | 2013

Initial MCNP6 Release Overview - MCNP6 version 1.0

John T. Goorley; Michael R. James; Thomas E. Booth; Forrest B. Brown; Jeffrey S. Bull; L.J. Cox; Joe W. Durkee; Jay S. Elson; Michael L Fensin; R.A. Forster; John S. Hendricks; H. Grady Hughes; Russell C. Johns; Brian C. Kiedrowski; Roger L. Martz; S. G. Mashnik; Gregg W. McKinney; Denise B. Pelowitz; R. E. Prael; Jeremy Ed Sweezy; Laurie S. Waters; Trevor Wilcox; Anthony J. Zukaitis


Transactions of the american nuclear society | 2004

Release of MCNP5_RSICC_1.30.

T. Goorley; Jeffrey S. Bull; Forrest B. Brown; Thomas E. Booth; H. G. Hughes; Russell D. Mosteller; R.A. Forster; S. E. Post; R. E. Prael; Elizabeth Carol Selcow; Avneet Sood; Jeremy Ed Sweezy


Submitted to: 12th Biennial Radiation and Shielding Division Topical Meeting of the American Nuclear Society, Santa Fe, NM, April 14-18, 2002 | 2002

MCNP(TM) Version 5.

L.J. Cox; Richard Barrett; Thomas E. Booth; Judith F. Briesmeister; Forrest B. Brown; Jeffrey S. Bull; G. C. Giesler; John T. Goorley; Russell D. Mosteller; R.A. Forster; S. E. Post; R. E. Prael; Elizabeth Carol Selcow; Avneet Sood


Radiation Protection Dosimetry | 2005

MCNP5 for proton radiography

H. Grady Hughes; Forrest B. Brown; Jeffrey S. Bull; John T. Goorley; Robert C. Little; Lon-Chang Liu; S. G. Mashnik; R. E. Prael; Elizabeth Carol Selcow; Arnold J. Sierk; Jeremy Ed Sweezy; John D. Zumbro; N. Mokhov; S. Striganov; Konstantin Gudima

Collaboration


Dive into the Jeffrey S. Bull's collaboration.

Top Co-Authors

Avatar

Forrest B. Brown

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian C. Kiedrowski

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. G. Mashnik

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. E. Prael

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael R. James

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John T. Goorley

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L.J. Cox

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Booth

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.A. Forster

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Arnold J. Sierk

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge