Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey T. LeJeune is active.

Publication


Featured researches published by Jeffrey T. LeJeune.


Applied and Environmental Microbiology | 2001

Cattle Water Troughs as Reservoirs of Escherichia coli O157

Jeffrey T. LeJeune; Thomas E. Besser; Dale D. Hancock

ABSTRACT Environmental survival of Escherichia coli O157 may play an important role in the persistence and dissemination of this organism on farms. The survival of culturable and infectious E. coli O157 was studied using microcosms simulating cattle water troughs. Culturable E. coli O157 survived for at least 245 days in the microcosm sediments. Furthermore, E. coli O157 strains surviving more than 6 months in contaminated microcosms were infectious to a group of 10-week-old calves. Fecal excretion ofE. coli O157 by these calves persisted for 87 days after challenge. Water trough sediments contaminated with feces from cattle excreting E. coli O157 may serve as a long-term reservoir of this organism on farms and a source of infection for cattle.


Applied and Environmental Microbiology | 2004

Longitudinal Study of Fecal Shedding of Escherichia coli O157:H7 in Feedlot Cattle: Predominance and Persistence of Specific Clonal Types despite Massive Cattle Population Turnover

Jeffrey T. LeJeune; T.E. Besser; Daniel H. Rice; Janice Berg; Robert Stilborn; Dale D. Hancock

ABSTRACT Identification of the sources and methods of transmission of Escherichia coli O157:H7 in feedlot cattle may facilitate the development of on-farm control measures for this important food-borne pathogen. The prevalence of E. coli O157:H7 in fecal samples of commercial feedlot cattle in 20 feedlot pens between April and September 2000 was determined throughout the finishing feeding period prior to slaughter. Using immunomagnetic separation, E. coli O157:H7 was isolated from 636 of 4,790 (13%) fecal samples in this study, with highest prevalence earliest in the feeding period. No differences were observed in the fecal or water trough sediment prevalence values of E. coli O157:H7 in 10 pens supplied with chlorinated drinking water supplies compared with nonchlorinated water pens. Pulsed-field gel electrophoresis of XbaI-digested bacterial DNA of the 230 isolates obtained from eight of the pens revealed 56 unique restriction endonuclease digestion patterns (REDPs), although nearly 60% of the isolates belonged to a group of four closely related genetic subtypes that were present in each of the pens and throughout the sampling period. The other REDPs were typically transiently detected, often in single pens and on single sample dates, and in many cases were also closely related to the four predominant REDPs. The persistence and predominance of a few REDPs observed over the entire feeding period on this livestock operation highlight the importance of the farm environment, and not necessarily the incoming cattle, as a potential source or reservoir of E. coli O157:H7 on farms.


Clinical Infectious Diseases | 2009

Unpasteurized Milk: A Continued Public Health Threat

Frederick J. Angulo; Jeffrey T. LeJeune; Päivi J. Rajala-Schultz

Although milk and dairy products are important components of a healthy diet, if consumed unpasteurized, they also can present a health hazard due to possible contamination with pathogenic bacteria. These bacteria can originate even from clinically healthy animals from which milk is derived or from environmental contamination occurring during collection and storage of milk. The decreased frequency of bovine carriage of certain zoonotic pathogens and improved milking hygiene have contributed considerably to decreased contamination of milk but have not, and cannot, fully eliminate the risk of milkborne disease. Pasteurization is the most effective method of enhancing the microbiological safety of milk. The consumption of milk that is not pasteurized increases the risk of contracting disease from a foodstuff that is otherwise very nutritious and healthy. Despite concerns to the contrary, pasteurization does not change the nutritional value of milk. Understanding the science behind this controversial and highly debated topic will provide public health care workers the information needed to discern fact from fiction and will provide a tool to enhance communication with clients in an effort to reduce the incidence of infections associated with the consumption of unpasteurized milk and dairy products.


Journal of Food Protection | 2004

Escherichia coli O157:H7 excretion by commercial feedlot cattle fed either barley- or corn-based finishing diets.

Janice Berg; Tim A. McAllister; Susan Bach; Robert Stilborn; Dale D. Hancock; Jeffrey T. LeJeune

Effective preharvest control measures for Escherichia coli O157:H7 in cattle may significantly reduce the incidence of human disease caused by this organism. The prevalence and magnitude of fecal E. coli O157:H7 excretion was evaluated in 15 pens (300 to 500 cattle per pen) of commercial feedlot cattle fed a barley-based finishing ration and compared with that in 15 pens of cattle fed a corn-based ration. Average E. coli O157:H7 prevalence was 2.4% in barley-fed cattle and 1.3% in the corn-fed cattle (P < 0.05), and average magnitude of fecal E. coli O157:H7 excretion was 3.3 log CFU/g in the barley-fed cattle and 3.0 log CFU/g in the corn-fed cattle (P < 0.01). Corn-fed cattle had lower average fecal pH values (5.85) than did barley-fed cattle (6.51) (P < 0.01), and the average total generic fecal E. coli concentration in this group of animals (6.24 log CFU/g) was greater than that in the barley-fed cattle (5.55 log CFU/g) (P < 0.01). Specific feed ingredients may impact the frequency and magnitude of fecal excretion of E. coli O157:H7 by cattle.


Emerging Infectious Diseases | 2004

Human Escherichia coli O157:H7 Genetic Marker in Isolates of Bovine Origin

Jeffrey T. LeJeune; Stephen T. Abedon; Kaori Takemura; Nicholas P. Christie; Srinand Sreevatsan

The antiterminator Q gene of bacteriophage 933W (Q933) was identified upstream of the stx2 gene in 90% of human disease–origin Escherichia coli O157:H7 isolates and in 44.5% of bovine isolates. Shiga toxin production was higher in Q933-positive isolates than Q933-negative isolates. This genetic marker may provide a useful molecular tool for epidemiologic studies.


Journal of Food Protection | 2008

Survival and dissemination of Escherichia coli O157:H7 on physically and biologically damaged lettuce plants.

Daniel Aruscavage; Sally A. Miller; Melanie L. Lewis Ivey; Ken Lee; Jeffrey T. LeJeune

The ecology of the vegetable leaf surface is important to the survival of enteric pathogens. Understanding changes in ecological parameters during the preharvest stages of production can lead to development of approaches to minimize the hazard of contamination of fresh fruits and vegetables with foodborne pathogens. In this study, survival levels of Escherichia coli O157 over a 10-day period were compared among traumatically injured, phytopathogen-damaged, and healthy lettuce plants. Leaves from lettuce plants cracked along the central vein, plants infected with Xanthomonas campestris pv. vitians, and healthy plants were inoculated with E. coli O157:H7. The presence of E. coli O157:H7 populations on inoculated leaves and non-inoculated leaves of these same plants was determined for 10 days. The density of E. coli O157:H7 decreased over time on the inoculated leaves regardless of the treatment. The population of E. coli O157:H7 remained higher on traumatically injured leaves than on healthy plants (P < 0.001). E. coli O157:H7 was detected on leaves other than the direct inoculation site of the enteric pathogen in all three treatments groups. Preharvest damage, especially that caused by traumatic injury, impacted the survivability of E. coli O157:H7. Maintaining healthy plants and minimizing physical damage around the time of harvest might improve the safety of fresh produce.


Applied and Environmental Microbiology | 2011

Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile.

Alexander Rodriguez-Palacios; Jeffrey T. LeJeune

ABSTRACT Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log10 within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log10 within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log10, 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores.


Applied and Environmental Microbiology | 2006

Clonal Dissemination of Escherichia coli O157:H7 Subtypes among Dairy Farms in Northeast Ohio

Amy Wetzel; Jeffrey T. LeJeune

ABSTRACT To ascertain the extent to which indistinguishable strains of Escherichia coli O157:H7 are shared between farms, molecular characterization was performed on E. coli O157:H7 isolates recovered during a longitudinal study of 20 dairy farms in northeast Ohio. Of the 20 dairy farms sampled, 16 were located in a primary area and 4 were located in two other distant geographical areas. A total of 92 E. coli O157:H7 isolates obtained from bovine fecal samples, water trough sediment samples, free-stall bedding, and wild-bird excreta samples were characterized. Fifty genetic subtypes were observed among the isolates using XbaI and BlnI restriction endonucleases. Most restriction endonuclease digestion profiles (REDPs) were spatially and temporally clustered. However, four REDPs from multiple sources were found to be indistinguishable by pulsed-field gel electrophoresis between four pairs of farms. The geographical distance between farms which shared an indistinguishable E. coli O157:H7 REDP ranged from 9 to 50 km, and the on-farm sources sharing indistinguishable REDPs included cattle and wild bird feces and free-stall bedding. Within the study population, E. coli O157:H7 REDP subtypes were disseminated with considerable frequency among farms in close geographic proximity, and nonbovine sources may contribute to the transmission of this organism between farms.


Journal of Applied Microbiology | 2009

Diversity of staphylococcal cassette chromosome in coagulase-negative staphylococci from animal sources

Y. Zhang; S. Agidi; Jeffrey T. LeJeune

Aims:  To type the staphylococcal cassette chromosome (SCC) in coagulase‐negative staphylococci (CoNS) from animal sources.


Animal Health Research Reviews | 2013

Clostridium difficile in foods and animals: history and measures to reduce exposure

Alex Rodriguez-Palacios; Stefan Borgmann; Terence R. Kline; Jeffrey T. LeJeune

Abstract Many articles have summarized the changing epidemiology of Clostridium difficile infections (CDI) in humans, but the emerging presence of C. difficile in foods and animals and possible measures to reduce human exposure to this important pathogen have been infrequently addressed. CDIs have traditionally been assumed to be restricted to health-care settings. However, recent molecular studies indicate that this is no longer the case; animals and foods might be involved in the changing epidemiology of CDIs in humans; and genome sequencing is disproving person-to-person transmission in hospitals. Although zoonotic and foodborne transmission have not been confirmed, it is evident that susceptible people can be inadvertently exposed to C. difficile from foods, animals, or their environment. Strains of epidemic clones present in humans are common in companion and food animals, raw meats, poultry products, vegetables, and ready-to-eat foods, including salads. In order to develop science-based prevention strategies, it is critical to understand how C. difficile reaches foods and humans. This review contextualizes the current understanding of CDIs in humans, animals, and foods. Based on available information, we propose a list of educational measures that could reduce the exposure of susceptible people to C. difficile. Enhanced educational efforts and behavior change targeting medical and non-medical personnel are needed.

Collaboration


Dive into the Jeffrey T. LeJeune's collaboration.

Top Co-Authors

Avatar

David L. Pearl

Ontario Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale D. Hancock

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Alexander Rodriguez-Palacios

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gireesh Rajashekara

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge