Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey W. Beeman is active.

Publication


Featured researches published by Jeffrey W. Beeman.


Astrophysical Journal Supplement Series | 2004

THE MULTIBAND IMAGING PHOTOMETER FOR SPITZER (MIPS)

G. H. Rieke; Erick T. Young; C. W. Engelbracht; D. M. Kelly; Frank J. Low; E. E. Haller; Jeffrey W. Beeman; Karl D. Gordon; J. A. Stansberry; Karl Anthony Misselt; James Cadien; J. E. Morrison; Gil Rivlis; William B. Latter; Alberto Noriega-Crespo; Deborah Lynne Padgett; Karl R. Stapelfeldt; Dean C. Hines; E. Egami; James Muzerolle; A. Alonso-Herrero; M. Blaylock; H. Dole; Joannah L. Hinz; Casey Papovich; P. G. Pérez-González; Paul S. Smith; K. Y. L. Su; Lee Bennett; D. T. Frayer

The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004

CUORE: a cryogenic underground observatory for rare events

C. Arnaboldi; Frank T. Avignone; Jeffrey W. Beeman; M. Barucci; M. Balata; Chiara Brofferio; C. Bucci; S. Cebrián; Richard J. Creswick; S. Capelli; L. Carbone; O. Cremonesi; A. de Ward; E. Fiorini; Horacio A. Farach; G. Frossati; A. Giuliani; D. Giugni; P. Gorla; E. E. Haller; I.G. Irastorza; R. J. McDonald; A. Morales; Eric B. Norman; P. Negri; Angelo Nucciotti; M. Pedretti; C. Pobes; V. Palmieri; Maura Pavan

CUORE is a proposed tightly packed array of 1000 TeO2 bolometers, each being a cube 5cm on a side with a mass of 760g. The array consists of 25 vertical towers, arranged in a square of 5 towers×5 towers, each containing 10 layers of four crystals. The design of the detector is optimized for ultralow-background searches: for neutrinoless double-beta decay of 130Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals 3×3×6cm3 of 340g has been completed, and a single CUORE tower is being constructed as a smaller-scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.


Astronomy and Astrophysics | 2009

The Large APEX Bolometer Camera LABOCA

G. Siringo; E. Kreysa; A. Kovács; F. Schuller; A. Weiß; W. Esch; N. Jethava; Gundula Lundershausen; Angel Colin; R. Güsten; K. M. Menten; A. Beelen; Frank Bertoldi; Jeffrey W. Beeman; E. E. Haller

The Large APEX BOlometer CAmera, LABOCA, has been commissioned for operation as a new facility instrument at the Atacama Pathfinder Experiment 12 m submillimeter telescope. This new 295-bolometer total power camera, operating in the 870 


The Astrophysical Journal | 2008

Debris disks around Sun-like stars

David E. Trilling; G. Bryden; C. A. Beichman; G. H. Rieke; K. Y. L. Su; J. A. Stansberry; M. Blaylock; Karl R. Stapelfeldt; Jeffrey W. Beeman; E. E. Haller

{\mu}


Physical Review Letters | 2003

Diluted II-VI Oxide Semiconductors with Multiple Band Gaps

Kin Man Yu; Wladyslaw Walukiewicz; J. Wu; W. Shan; Jeffrey W. Beeman; Michael A. Scarpulla; O. D. Dubon; P. Becla

m atmospheric window, combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, offers unprecedented capability in mapping submillimeter continuum emission for a wide range of astronomical purposes.


Publications of the Astronomical Society of the Pacific | 2007

Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 μm imaging

Karl D. Gordon; C. W. Engelbracht; D. Fadda; J. A. Stansberry; Stefanie Wachter; D. T. Frayer; G. H. Rieke; Alberto Noriega-Crespo; William B. Latter; Erick T. Young; G. Neugebauer; Zoltan Balog; Jeffrey W. Beeman; H. Dole; E. Egami; E. E. Haller; Dean C. Hines; D. M. Kelly; Francine Roxanne Marleau; Karl Anthony Misselt; J. E. Morrison; P. G. Pérez-González; Jeonghee Rho; Wm. A. Wheaton

We have observed nearly 200 FGK stars at 24 and 70 ?m with the Spitzer Space Telescope. We identify excess infrared emission, including a number of cases where the observed flux is more than 10 times brighter than the predicted photospheric flux, and interpret these signatures as evidence of debris disks in those systems. We combine this sample of FGK stars with similar published results to produce a sample of more than 350 main sequence AFGKM stars. The incidence of debris disks is -->4.2+ 2.0?1.1% at 24 ?m for a sample of 213 Sun-like (FG) stars and -->16.4+ 2.8?2.9% at 70 ?m for 225 Sun-like (FG) stars. We find that the excess rates for A, F, G, and K stars are statistically indistinguishable, but with a suggestion of decreasing excess rate toward the later spectral types; this may be an age effect. The lack of strong trend among FGK stars of comparable ages is surprising, given the factor of 50 change in stellar luminosity across this spectral range. We also find that the incidence of debris disks declines very slowly beyond ages of 1 billion years.


Journal of the American Chemical Society | 2014

Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces

Jinhui Yang; Karl Walczak; Eitan Anzenberg; Francesca M. Toma; Guangbi Yuan; Jeffrey W. Beeman; Adam M. Schwartzberg; Mark Hettick; Ali Javey; Joel W. Ager; Junko Yano; Heinz Frei; Ian D. Sharp

We report the realization of a new mult-band-gap semiconductor. Zn(1-y)Mn(y)OxTe1-x alloys have been synthesized using the combination of oxygen ion implantation and pulsed laser melting. Incorporation of small quantities of isovalent oxygen leads to the formation of a narrow, oxygen-derived band of extended states located within the band gap of the Zn(1-y)Mn(y)Te host. When only 1.3% of Te atoms are replaced with oxygen in a Zn0.88Mn0.12Te crystal the resulting band structure consists of two direct band gaps with interband transitions at approximately 1.77 and 2.7 eV. This remarkable modification of the band structure is well described by the band anticrossing model. With multiple band gaps that fall within the solar energy spectrum, Zn(1-y)Mn(y)OxTe1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%.


Applied Optics | 2001

Silicon nitride micromesh bolometer array for submillimeter astrophysics

A. D. Turner; James J. Bock; Jeffrey W. Beeman; J. Glenn; Peter Charles Hargrave; Viktor V. Hristov; H. T. Nguyen; Faiz Rahman; Srinivasan Sethuraman; Adam L. Woodcraft

The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 μm coarse‐and fine‐scale imaging modes are presented based on over 2.5 yr of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long‐term detector transients. Point‐spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse‐scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^(−1), and with spectral types from B to M. The coarse‐scale calibration is 702 ± 35 MJy sr^(−1) MIPS70^(−1) (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 μm coarse‐ and fine‐scale imaging modes are called MIPS70 and MIPS70F, respectively. The photometric repeatability is calculated to be 4.5% from two stars measured during every MIPS campaign and includes variations on all timescales probed. The preliminary fine‐scale calibration factor is 2894 ± 294 MJy sr^(−1) MIPS70F^(−1) (10% uncertainty) based on 10 stars. The uncertainties in the coarse‐ and fine‐scale calibration factors are dominated by the 4.5% photometric repeatability and the small sample size, respectively. The 5 σ, 500 s sensitivity of the coarse‐scale observations is 6–8 mJy. This work shows that the MIPS 70 μm array produces accurate, well‐calibrated photometry and validates the MIPS 70 μm operating strategy, especially the use of frequent stimulator flashes to track the changing responsivities of the Ge:Ga detectors.


Publications of the Astronomical Society of the Pacific | 2007

Absolute calibration and characterization of the multiband imaging photometer for Spitzer - III. An asteroid-based calibration of MIPS at 160 μm

J. A. Stansberry; Karl D. Gordon; Bidushi Bhattacharya; C. W. Engelbracht; G. H. Rieke; Francine Roxanne Marleau; D. Fadda; D. T. Frayer; Alberto Noriega-Crespo; Stefanie Wachter; Erick T. Young; Thomas Müller; D. M. Kelly; M. Blaylock; David A. Henderson; G. Neugebauer; Jeffrey W. Beeman; E. E. Haller

Plasma-enhanced atomic layer deposition of cobalt oxide onto nanotextured p(+)n-Si devices enables efficient photoelectrochemical water oxidation and effective protection of Si from corrosion at high pH (pH 13.6). A photocurrent density of 17 mA/cm(2) at 1.23 V vs RHE, saturation current density of 30 mA/cm(2), and photovoltage greater than 600 mV were achieved under simulated solar illumination. Sustained photoelectrochemical water oxidation was observed with no detectable degradation after 24 h. Enhanced performance of the nanotextured structure, compared to planar Si, is attributed to a reduced silicon oxide thickness that provides more intimate interfacial contact between the light absorber and catalyst. This work highlights a general approach to improve the performance and stability of Si photoelectrodes by engineering the catalyst/semiconductor interface.


Physics Letters B | 2012

A next-generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers

Jeffrey W. Beeman; F.A. Danevich; V.Ya. Degoda; E.N. Galashov; A. Giuliani; V. Kobychev; M. Mancuso; S. Marnieros; C. Nones; E. Olivieri; G. Pessina; C. Rusconi; V.N. Shlegel; V.I. Tretyak; Ya.V. Vasiliev

We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope.

Collaboration


Dive into the Jeffrey W. Beeman's collaboration.

Top Co-Authors

Avatar

E. E. Haller

Center for Advanced Materials

View shared research outputs
Top Co-Authors

Avatar

Joel W. Ager

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric H. Silver

Smithsonian Astrophysical Observatory

View shared research outputs
Top Co-Authors

Avatar

O. D. Dubon

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kin Man Yu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Walukiewicz

Center for Advanced Materials

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. M. Yu

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge