Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffry L. Dudycha is active.

Publication


Featured researches published by Jeffry L. Dudycha.


Genome Research | 2016

High mutational rates of large-scale duplication and deletion in Daphnia pulex

Nathan Keith; Abraham E. Tucker; Craig Jackson; Way Sung; José Ignacio Lucas Lledó; Daniel R. Schrider; Sarah Schaack; Jeffry L. Dudycha; Matthew S. Ackerman; Andrew J. Younge; Joseph R. Shaw; Michael Lynch

Knowledge of the genome-wide rate and spectrum of mutations is necessary to understand the origin of disease and the genetic variation driving all evolutionary processes. Here, we provide a genome-wide analysis of the rate and spectrum of mutations obtained in two Daphnia pulex genotypes via separate mutation-accumulation (MA) experiments. Unlike most MA studies that utilize haploid, homozygous, or self-fertilizing lines, D. pulex can be propagated ameiotically while maintaining a naturally heterozygous, diploid genome, allowing the capture of the full spectrum of genomic changes that arise in a heterozygous state. While base-substitution mutation rates are similar to those in other multicellular eukaryotes (about 4 × 10(-9) per site per generation), we find that the rates of large-scale (>100 kb) de novo copy-number variants (CNVs) are significantly elevated relative to those seen in previous MA studies. The heterozygosity maintained in this experiment allowed for estimates of gene-conversion processes. While most of the conversion tract lengths we report are similar to those generated by meiotic processes, we also find larger tract lengths that are indicative of mitotic processes. Comparison of MA lines to natural isolates reveals that a majority of large-scale CNVs in natural populations are removed by purifying selection. The mutations observed here share similarities with disease-causing, complex, large-scale CNVs, thereby demonstrating that MA studies in D. pulex serve as a system for studying the processes leading to such alterations.


The American Naturalist | 2015

The Phenotypic Effects of Spontaneous Mutations in Different Environments

Leigh C. Latta; Mica Peacock; David J. Civitello; Jeffry L. Dudycha; Jesse M. Meik; Sarah Schaack

Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.


Mechanisms of Ageing and Development | 2014

Relationship between heat shock protein 70 expression and life span in Daphnia.

Charles Schumpert; Indhira Handy; Jeffry L. Dudycha; Rekha C. Patel

The longevity of an organism is directly related to its ability to effectively cope with cellular stress. Heat shock response (HSR) protects the cells against accumulation of damaged proteins after exposure to elevated temperatures and also in aging cells. To understand the role of Hsp70 in regulating life span of Daphnia, we examined the expression of Hsp70 in two ecotypes that exhibit strikingly different life spans. Daphnia pulicaria, the long lived ecotype, showed a robust Hsp70 induction as compared to the shorter lived Daphnia pulex. Interestingly, the short-lived D. pulex isolates showed no induction of Hsp70 at the mid point in their life span. In contrast to this, the long-lived D. pulicaria continued to induce Hsp70 expression at an equivalent age. We further show that the Hsp70 expression was induced at transcriptional level in response to heat shock. The transcription factor responsible for Hsp70 induction, heat shock factor-1 (HSF-1), although present in aged organisms did not exhibit DNA-binding capability. Thus, the decline of Hsp70 induction in old organisms could be attributed to a decline in HSF-1s DNA-binding activity. These results for the first time, present a molecular analysis of the relationship between HSR and life span in Daphnia.


PLOS ONE | 2015

Telomerase activity and telomere length in Daphnia.

Charles Schumpert; Jacob Nelson; Eunsuk Kim; Jeffry L. Dudycha; Rekha C. Patel

Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.


Journal of Experimental Zoology | 2014

Resveratrol and food effects on lifespan and reproduction in the model crustacean Daphnia.

Eunsuk Kim; Christine M. Ansell; Jeffry L. Dudycha

Longevity is a highly variable life history trait and its variation is attributable to both genetic and environmental factors. Exploring well-known environmental factors in a new model system is a useful approach to explore taxonomic variation in plasticity of longevity. We examined responsiveness of the Daphnia pulex clone TCO to potentially related interventions that have been reported to extend lifespan: resveratrol and dietary restriction. First, we examined effects of resveratrol on lifespan and fecundity in TCO which were grown at moderate (12K cells Ankistrodesmus falcatus mL⁻¹) and high (20K cells A. falcatus mL⁻¹) food levels. We found no evidence for lifespan extension by resveratrol, but found a reduction of lifetime fecundity. The effect of resveratrol on fecundity was more pronounced early in life. We then conducted an additional life table to test the effect of dietary restriction on TCO. Surprisingly, reduced food level did not extend the lifespan of TCO, which contrasts with previous studies in D. pulex. Our results suggest that variation in the response to dietary restriction might be more common than previously thought. If resveratrol activates genes involved in the response to dietary restriction, genetic polymorphisms in dietary restriction will influence responses to resveratrol. Thus, this experiment suggests that careful re-examination of resveratrol effects using diverse genotypes is required.


BMC Biotechnology | 2015

Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia

Charles Schumpert; Jeffry L. Dudycha; Rekha C. Patel

BackgroundRNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Daphnia, a freshwater microcrustacean, is an emerging model organism for studying cellular and molecular processes involved in aging, development, and ecotoxicology especially in the context of environmental variation. However, in spite of the availability of a fully sequenced genome of Daphnia pulex, meaningful mechanistic studies have been hampered by a lack of molecular techniques to alter gene expression. A microinjection method for gene knockdown by RNAi has been described but the need for highly specialized equipment as well as technical expertise limits the wider application of this technique. In addition to being expensive and technically challenging, microinjections can only target genes expressed during embryonic stages, thus making it difficult to achieve effective RNAi in adult organisms.ResultsIn our present study we present a bacterial feeding method for RNAi in Daphnia. We used a melanic Daphnia species (Daphnia melanica) that exhibits dark pigmentation to target phenoloxidase, a key enzyme in the biosynthesis of melanin. We demonstrate that our RNAi method results in a striking phenotype and that the phenoloxidase mRNA expression and melanin content, as well as survival following UV insults, are diminished as a result of RNAi.ConclusionsOverall, our results establish a new method for RNAi in Daphnia that significantly advances further use of Daphnia as a model organism for functional genomics studies. The method we describe is relatively simple and widely applicable for knockdown of a variety of genes in adult organisms.


Ecology and Evolution | 2012

Population genomics of resource exploitation: insights from gene expression profiles of two Daphnia ecotypes fed alternate resources.

Jeffry L. Dudycha; Christopher S. Brandon; Kevin C. Deitz

Consumer–resource interactions are a central issue in evolutionary and community ecology because they play important roles in selection and population regulation. Most consumers encounter resource variation at multiple scales, and respond through phenotypic plasticity in the short term or evolutionary divergence in the long term. The key traits for these responses may influence resource acquisition, assimilation, and/or allocation. To identify relevant candidate genes, we experimentally assayed genome-wide gene expression in pond and lake Daphnia ecotypes exposed to alternate resource environments. One was a simple, high-quality laboratory diet, Ankistrodesmus falcatus. The other was the complex natural seston from a large lake. In temporary ponds, Daphnia generally experience high-quality, abundant resources, whereas lakes provide low-quality, seasonally shifting resources that are chronically limiting. For both ecotypes, we used replicate clones drawn from a number of separate populations. Fourteen genes were differentially regulated with respect to resources, including genes involved in gut processes, resource allocation, and activities with no obvious connection to resource exploitation. Three genes were differentially regulated in both ecotypes; the others may play a role in ecological divergence. Genes clearly linked to gut processes include two peritrophic matrix proteins, a Niemann–Pick type C2 gene, and a chymotrypsin. A pancreatic lipase, an epoxide hydrolase, a neuroparsin, and an UDP-dependent glucuronyltransferase are potentially involved in resource allocation through effects on energy processing and storage or hormone pathways. We performed quantitative rt-PCR for eight genes in independent samples of three clones of each of the two ecotypes. Though these largely confirmed observed differential regulation, some genes’ expression was highly variable among clones. Our results demonstrate the value of matching the level of biological replication in genome-wide assays to the question, as it gave us insight into ecotype-level responses at ecological and evolutionary scales despite substantial variation within ecotypes.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2014

Ecological constraints on sensory systems: compound eye size in Daphnia is reduced by resource limitation

Christopher S. Brandon; Jeffry L. Dudycha

Eye size is an indicator of visual capability, and macroevolutionary patterns reveal that taxa inhabiting dim environments have larger eyes than taxa from bright environments. This suggests that the light environment is a key driver of variation in eye size. Yet other factors not directly linked with visual tasks (i.e., non-sensory factors) may influence eye size. We sought to jointly investigate the roles of sensory (light) and non-sensory factors (food) in determining eye size and ask whether non-sensory factors could constrain visual capabilities. We tested environmental influences on eye size in four species of the freshwater crustacean Daphnia, crossing bright and dim light levels with high and low resource levels. We measured absolute eye size and eye size relative to body size in early and late adulthood. In general, Daphnia reared on low resources had smaller eyes, both absolutely and relatively. In contrast to the dominant macroevolutionary pattern, phenotypic plasticity in response to light was rarely significant. These patterns of phenotypic plasticity were true for overall diameter of the eye and the diameter of individual facets. We conclude that non-sensory environmental factors can influence sensory systems, and in particular, that resource availability may be an important constraint on visual capability.


Journal of Molecular Evolution | 2017

Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins

Christopher S. Brandon; Matthew J. Greenwold; Jeffry L. Dudycha

Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron–exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.


Ecology and Evolution | 2013

Correlated responses to clonal selection in populations of Daphnia pulicaria: mechanisms of genetic correlation and the creative power of sex

Jeffry L. Dudycha; Margaret Snoke-Smith; Ricardo Alía

Genetic correlations among traits alter evolutionary trajectories due to indirect selection. Pleiotropy, chance linkage, and selection can all lead to genetic correlations, but have different consequences for phenotypic evolution. We sought to assess the mechanisms contributing to correlations with size at maturity in the cyclic parthenogen Daphnia pulicaria. We selected on size in each of four populations that differ in the frequency of sex, and evaluated correlated responses in a life table. Size at advanced adulthood, reproductive output, and adult growth rate clearly showed greater responses in high-sex populations, with a similar pattern in neonate size and r. This pattern is expected only when trait correlations are favored by selection and the frequency of sex favors the creation and demographic expansion of highly fit clones. Juvenile growth and age at maturity did not diverge consistently. The inter-clutch interval appeared to respond more strongly in low-sex populations, but this was not statistically significant. Our data support the hypothesis that correlated selection is the strongest driver of genetic correlations, and suggest that in organisms with both sexual and asexual reproduction, adaptation can be enhanced by recombination.

Collaboration


Dive into the Jeffry L. Dudycha's collaboration.

Top Co-Authors

Avatar

Charles Schumpert

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Rekha C. Patel

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eunsuk Kim

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abraham E. Tucker

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Younge

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Campbell R Hathaway

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Christiane Hassel

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Christine M. Ansell

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge