Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rekha C. Patel is active.

Publication


Featured researches published by Rekha C. Patel.


The EMBO Journal | 1998

PACT, a protein activator of the interferon-induced protein kinase, PKR.

Rekha C. Patel; Ganes C. Sen

PKR, a latent protein kinase, mediates the antiviral actions of interferon. It is also involved in cellular signal transduction, apoptosis, growth regulation and differentiation. Although in virus‐infected cells, viral double‐stranded (ds) RNA can serve as a PKR activator, cellular activators have remained obscure. Here, we report the cloning of PACT, a cellular protein activator of PKR. PACT heterodimerized with PKR and activated it in vitro in the absence of dsRNA. In mammalian cells, overexpression of PACT caused PKR activation and, in yeast, co‐expression of PACT enhanced the anti‐growth effect of PKR. Thus, PACT has the hallmarks of a direct activator of PKR.


Journal of Biological Chemistry | 1999

DRBP76, a Double-stranded RNA-binding Nuclear Protein, Is Phosphorylated by the Interferon-induced Protein Kinase, PKR

Rekha C. Patel; Deborah J. Vestal; Zan Xu; Smarajit Bandyopadhyay; Weidong Guo; Scott M. Erme; Bryan R. G. Williams; Ganes Sen

The interferon-induced double-stranded RNA-activated protein kinase PKR is the prototype of a class of double-stranded (dsRNA)-binding proteins (DRBPs) which share a dsRNA-binding motif conserved from Drosophila to humans. Here we report the purification of DRBP76, a new human member of this class of proteins. Sequence from the amino terminus of DRBP76 matched that of the M phase-specific protein, MPP4. DRBP76 was also cloned by the yeast two-hybrid screening of a cDNA library using a mutant PKR as bait. Analysis of the cDNA sequence revealed that it is the full-length version of MPP4, has a bipartite nuclear localization signal, two motifs that can mediate interactions with both dsRNA and PKR, five epitopes for potential M phase-specific phosphorylation, two potential sites for phosphorylation by cyclin-dependent kinases, a RG2 motif present in many RNA-binding proteins and predicts a protein of 76 kDa. DsRNA and PKR interactions of DRBP76 were confirmed by analysis of in vitro translated and purified native proteins. Cellular expression of an epitope-tagged DRBP76 demonstrated its nuclear localization, and its co-immunoprecipitation with PKR demonstrated that the two proteins interact in vivo. Finally, purified DRBP76 was shown to be a substrate of PKRin vitro, indicating that this protein’s cellular activities may be regulated by PKR-mediated phosphorylation.


Molecular and Cellular Biology | 2009

TRBP Control of PACT-Induced Phosphorylation of Protein Kinase R Is Reversed by Stress

Aïcha Daher; Ghislaine Laraki; Madhurima Singh; Carlos Melendez-Pena; Sylvie Bannwarth; Antoine H. F. M. Peters; Eliane F. Meurs; Robert E. Braun; Rekha C. Patel; Anne Gatignol

ABSTRACT The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTΔ13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTΔ13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTΔ13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2−/− murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress.


Journal of Biological Chemistry | 1996

Specific Mutations Near the Amino Terminus of Double-stranded RNA-dependent Protein Kinase (PKR) Differentially Affect Its Double-stranded RNA Binding and Dimerization Properties

Rekha C. Patel; Paul Stanton; Ganes C. Sen

The amino-terminal region of the double-stranded (ds) RNA-dependent protein kinase, PKR, has been shown to mediate both dsRNA binding and protein dimerization. To critically examine if PKR dimerization is dependent on dsRNA binding, we generated a series of mutants that are incapable of binding dsRNA. Some, but not all, of these mutants retained the ability to dimerize, as shown by a two-hybrid transcriptional activation assay in vivo and a chemical cross-linking assay in vitro. These mutants were used further to demonstrate that the translational inhibitory activity of PKR in vivo requires dsRNA binding; PKR mutants that dimerized but did not bind dsRNA could not inhibit the translation of a transfected reporter gene.


Molecular and Cellular Biology | 1998

Requirement of PKR Dimerization Mediated by Specific Hydrophobic Residues for Its Activation by Double-Stranded RNA and Its Antigrowth Effects in Yeast

Rekha C. Patel; Ganes C. Sen

ABSTRACT The roles of protein dimerization and double-stranded RNA (dsRNA) binding in the biochemical and cellular activities of PKR, the dsRNA-dependent protein kinase, were investigated. We have previously shown that both properties of the protein are mediated by the same domain. Here we show that dimerization is mediated by hydrophobic residues present on one side of an amphipathic α-helical structure within this domain. Appropriate substitution mutations of residues on that side produced mutants with increased or decreased dimerization activities. Using these mutants, we demonstrated that dimerization is not essential for dsRNA binding. However, enhancing dimerization artificially, by providing an extraneous dimerization domain, increased dsRNA binding of both wild-type and mutant proteins. In vitro, the dimerization-defective mutants could not be activated by dsRNA but were activated normally by heparin. In Saccharomyces cerevisiae, unlike wild-type PKR, these mutants could not inhibit cell growth and the dsRNA-binding domain of the dimerization-defective mutants could not prevent the antigrowth effect of wild-type PKR. These results demonstrate the biological importance of the dimerization properties of PKR.


Virology | 2003

The carboxy-terminal, M3 motifs of PACT and TRBP have opposite effects on PKR activity

Vishal Gupta; Xu Huang; Rekha C. Patel

PKR is an interferon(IFN)-induced, serine-threonine protein kinase, which plays a crucial role in IFNs antiviral and antiproliferative actions. The three known activators of PKR are dsRNA, heparin, and PACT. PACT activates PKR by direct protein-protein interaction in response to cellular stress. The human TAR (trans-activating region)-binding protein (TRBP), which is very homologous to PACT, also interacts with PKR, leading to an inhibition of PKR activity. Since these two highly homologous proteins have opposite effects on PKR, we examined if they interact with PKR differently by assaying their interaction with various point mutants of PKR. Our results indicate that TRBP and PACT interact with PKR through the same residues, and no differences were identified in these two interactions. Domain swap experiments between PACT and TRBP indicated that the inhibitory effects of TRBP on PKR activity are mediated through its carboxy-terminal residues, which contain TRBPs third dsRNA-binding motif.


Biochemical Journal | 2002

The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR).

Xu Huang; Brian Hutchins; Rekha C. Patel

One of the key mediators of the antiviral and antiproliferative actions of interferon is double-stranded-RNA-dependent protein kinase (PKR). PKR activity is also involved in the regulation of cell proliferation, apoptosis and signal transduction. We have recently identified PACT, a novel protein activator of PKR, as an important modulator of PKR activity in cells in the absence of viral infection. PACT heterodimerizes with PKR and activates it by direct protein-protein interactions. Endogenous PACT acts as an activator of PKR in response to diverse stress signals, such as serum starvation and peroxide or arsenite treatment, and is therefore a novel, stress-modulated physiological activator of PKR. In this study, we have characterized the functional domains of PACT that are required for PKR activation. Our results have shown that, unlike the N-terminal conserved domains 1 and 2, the third conserved domain of PACT is dispensable for its binding of double-stranded RNA and inter action with PKR. However, a deletion of domain 3 results in a loss of PKR activation ability, in spite of a normal interaction with PKR, thereby indicating that domain 3 plays an essential role in PKR activation. Purified recombinant domain 3 could also activate PKR efficiently in vitro. Our results indicate that, although dispensable for PACTs high-affinity interaction with PKR, the third motif is essential for PKR activation. In addition, domain 3 and eukaryotic initiation factor 2alpha both interact with PKR through the same region within PKR, which we have mapped to lie between amino acid residues 318 and 551.


PLOS ONE | 2012

AP-1 Mediated Transcriptional Repression of Matrix Metalloproteinase-9 by Recruitment of Histone Deacetylase 1 in Response to Interferon β

Megan L. Mittelstadt; Rekha C. Patel

Matrix metalloproteinase-9 (MMP-9) is a 92 kDa zinc-dependant endopeptidase that degrades components of the extracellular matrix. Increased expression of MMP-9 is implicated in many pathological conditions including metastatic cancer, multiple sclerosis, and atherosclerosis. Although it has been widely noted that interferon-β (IFNβ) downregulates both the basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 expression at the transcriptional level, the molecular mechanism of this repression is poorly understood. In the present study we identify a novel mechanism for repression of MMP-9 transcription by IFNβ in HT1080 fibrosarcoma cells. Using reporter assays with promoter deletion constructs we show that IFNβ’s inhibitory effects require a region of the promoter between −154 and −72, which contains an AP-1 binding site. Chromatin immunoprecipitation (ChIP) studies indicate that IFNβ increases histone deacetylase (HDAC)-1 recruitment to the MMP-9 promoter and reduces histone H3 acetylation, in addition to reduced NF-κB recruitment. ChIP analysis shows that IFNβ induced HDAC1 recruitment to the MMP-9 promoter and IFNβ mediated transcriptional repression is lost when the AP-1 binding site is inactivated by a point mutation. Altogether, our results establish that the repression of MMP-9 transcription in response to IFNβ occurs by the recruitment of HDAC1 via the proximal AP-1 binding site.


Retrovirology | 2013

The PKR activator, PACT, becomes a PKR inhibitor during HIV-1 replication

Guerline Clerzius; Eileen Shaw; Aïcha Daher; Samantha Burugu; Jean-François Gélinas; Thornin Ear; Lucile Sinck; Jean-Pierre Routy; Andrew J. Mouland; Rekha C. Patel; Anne Gatignol

BackgroundHIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic translation Initiation Factor 2 (eIF2α), which decreases viral replication. The PKR Activator (PACT) is known to activate PKR after a cellular stress. In lymphocytic cell lines, HIV-1 activates PKR only transiently and not when cells replicate the virus at high levels. The regulation of this activation is due to a combination of viral and cellular factors that have been only partially identified.ResultsPKR is transiently induced and activated in peripheral blood mononuclear cells after HIV-1 infection. The addition of IFN reduces viral replication, and induces both the production and phosphorylation of PKR. In lymphocytic Jurkat cells infected by HIV-1, a multiprotein complex around PKR contains the double-stranded RNA binding proteins (dsRBPs), adenosine deaminase acting on RNA (ADAR)1 and PACT. In HEK 293T cells transfected with an HIV-1 molecular clone, PACT unexpectedly inhibited PKR and eIF2α phosphorylation and increased HIV-1 protein expression and virion production in the presence of either endogenous PKR alone or overexpressed PKR. The comparison between different dsRBPs showed that ADAR1, TAR RNA Binding Protein (TRBP) and PACT inhibit PKR and eIF2α phosphorylation in HIV-infected cells, whereas Staufen1 did not. Individual or a combination of short hairpin RNAs against PACT or ADAR1 decreased HIV-1 protein expression. In the astrocytic cell line U251MG, which weakly expresses TRBP, PACT mediated an increased HIV-1 protein expression and a decreased PKR phosphorylation. In these cells, a truncated PACT, which constitutively activates PKR in non-infected cells showed no activity on either PKR or HIV-1 protein expression. Finally, PACT and ADAR1 interact with each other in the absence of RNAs.ConclusionIn contrast to its previously described activity, PACT contributes to PKR dephosphorylation during HIV-1 replication. This activity is in addition to its heterodimer formation with TRBP and could be due to its binding to ADAR1. HIV-1 has evolved to replicate in cells with high levels of TRBP, to induce the expression of ADAR1 and to change the function of PACT for PKR inhibition and increased replication.


Biochemistry | 2011

Stress-Induced Phosphorylation of PACT Reduces Its Interaction with TRBP and Leads to PKR Activation

Madhurima Singh; David Castillo; Chandrashekhar V. Patel; Rekha C. Patel

PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACTs association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACTs ability to activate PKR by weakening PACTs interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.

Collaboration


Dive into the Rekha C. Patel's collaboration.

Top Co-Authors

Avatar

Indhira Handy

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhurima Singh

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Charles Schumpert

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Evelyn Chukwurah

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jeffry L. Dudycha

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lauren S. Vaughn

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge